Лдс лампа. Лампы дневного света: устройство, принцип работы, стартеры
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Как зажечь лампу дневного света без стартера и дросселя. Лдс лампа


Лампы дневного света: устройство, принцип работы, стартеры

Современное общество стремится экономить на любых видах энергоносителей, особенно на электричестве. Это связано с постоянным возрастанием оплаты за свет. Поэтому в жизнь людей очень прочно входят и активно используются лампы дневного света.

Из чего состоят лампы дневного света

Сама лампа состоит из стеклянной колбы, которая может быть различной формы и диаметра. По своему строению и виду они делятся:

  • компактные с цоколем Е 14 и Е 27;
  • кольцевые;
  • U- образные;
  • прямые.

Независимо от внешнего вида, каждая из ламп дневного света имеет внутри электроды, специальное люминесцентное покрытие, закачанный инертный газ с парами ртути. Из-за того, что электроды накаляются, происходит периодическое зажигание инертного газа, поэтому люминофор светится. Учитывая, что спирали могут при кратковременном разогреве перегреваться и сгорать, в этих приборах используется стартер для ламп дневного света. Стоит отметить и тот факт, что спирали в осветителях дневного света небольшого размера, им не подходит стандартное напряжение, поэтому устанавливаются специальные приборы – дроссели, задачей которых является ограничение номинального значения силы тока.

Принцип работы люминесцентной лампы

Когда осветитель подключается к сети, происходит автоматическая подача сетевого напряжения в 220 В на схему, далее оно следует на стартер. Так как контакты еще разомкнуты, то полное напряжение через прибор не идет, а попадает на дроссель, где колеблется около нуля. Этого напряжения достаточно, чтобы произошел розжиг разряда в лампочке. Как только биметаллический электрод стартера разогреется, он загибается и происходит замыкание электрической цепи, нити в люминесцентной лампе загораются. Это приводит к запуску в работу самой лампы.

В качестве электродов в дневных лампах установлены вольфрамовые нити накала. На них обязательно наносится специальное покрытие защитной пастой. Через некоторое время эта паста сгорает, что влечет перегорание нити накала. Если хотя бы одна из нитей перегорит, осветитель выходит из строя и зажигаться не будет.

Как правильно подключить осветительный прибор

Существуют схемы подключения ламп дневного света. Они очень простые и не вызывают трудности даже у неопытного человека. Для одного источника света достаточно, на собранную схему, подать напряжение через клеммы. Оно последует на дроссель, далее, на первую спираль. Затем, включается стартер, он реагирует на поступивший ток, и пропускает его дальше на вторую спираль, подключенную к клемме.

Некоторые специалисты рекомендуют устанавливать конденсаторы, которые выполняют функцию сетевого фильтра. Он помогает уменьшить потребление электроэнергии, так как гасит частично мощность, вырабатываемую дросселем.

Если вам необходимо установить несколько приборов дневного света, то схемы подключения немного изменятся. Все лампы будут соединяться последовательно. Будет использоваться несколько стартеров, для каждого источника отдельно. Если вы хотите установить две лампы на один дроссель, то необходимо прочитать номинальную мощность, которая указывается на корпусе. Если мощность дросселя составляет 40 Вт, то к нему подсоединяются только два прибора с мощностью в 20 Вт.

Разработаны схемы подключения ламп без использования стартера. Их заменяют электронные балластные устройства. В таком варианте прибор дневного света включается мгновенно, нет моргания, как при включении стартера.

Подключить электронные балласты легко. Для этого достаточно ознакомиться с инструкцией, которая находится на корпусе прибора. В таких инструкциях указана схема подключения, какие контакты лампы должны быть соединены с соответствующими клеммами. Стоит отметить, что многие специалисты считают, что именно такой способ имеет большие преимущества:

  • вам не нужно наличие дополнительных элементов для управления и подключения стартера;
  • работа лампы без стартера продолжительней, так как исключается установка соединительных проводов прибора и стартера, которые часто и быстро выходят из строя.

Стоит отметить, что подключение ламп дневного накаливания не вызывает особого труда, так как в комплекте с прибором идут все необходимые элементы устройства и схемы их сборки. Вам не нужно что-то покупать дополнительно и выдумывать, или отыскивать схемы сборки устройства.

Поломки лампы дневного света, ремонт и замена

Как только вы обнаружили проблемы в работе устройства, необходимо выяснить причины неисправности, и определиться: нужна ли полная замена лампы, или достаточно поставить новый элемент. Самыми распространенными неполадками являются проблемы в работе стартера или дросселя. Когда лампа при включении зажигается лишь с одной стороны, то необходимо перевернуть ее таким образом, чтобы вход несветящейся части стал на противоположное место. В случае когда лампа продолжает светить так же, то ее можно выбросить — она неисправна.

Часто встречаются неполадки, когда светятся два конца лампы, а вся она не зажигается. Это может свидетельствовать о неисправности стартера, проводки или патрона. Начните проверку со стартера. Если он исправен, то начинайте работу с проводкой, возможно, в ней возникли замыкания.

Если лампа при включении загорается тусклым светом, а через несколько минут начинает пульсировать и вообще гаснет, то это свидетельствует о попадании в колбу воздуха. В таком случае требуется замена прибора.

Как работает дроссель, основные признаки поломки

Некоторые лампы резко и мгновенно зажигаются, но после нескольких часов работы, края источника света темнеют. На такую работу стоит сразу обратить внимание. Это свидетельствует о быстром выходе из строя прибора. Причиной поломки станет проблема в работе дросселя: пусковой и рабочий ток имеют показатели, превышающие норму. Для точной диагностики неполадки достаточно воспользоваться вольтметром, и проверить величину пускового и рабочего тока. Чаще всего специалисты находят неисправности нескольких катодов.

Некоторые пользователи наблюдают, что в лампе дневного света периодически вьется змейка. Это также указывает на проблемы в работе дросселя. В источник поступает электрическое напряжение, но разряд внутри неравномерный. Здесь также достаточно проверить величину пускового и рабочего напряжения, и при обнаружении превышения, заменить дроссель на новый.

Основные проблемы в работе стартера

Когда владелец лампы дневного света наблюдает картину постоянно или периодически гаснущего прибора, то это указывает на проблемы в работе стартера и лампы. Для точной диагностики неполадок, необходимо проверить входящее напряжение в приборе. Если его параметры гораздо выше, то достаточно заменить только лампу. Обязательно измеряйте напряжение и в стартере. Если оно ниже нормы, то необходима замена стартера.

В случае, если светильник дневного света начинает функционировать тускло, то это признак резкого снижения тока внутри до критического уровня. Это свидетельствует о неполадках дросселя. Когда вы измерили в нем напряжение и убедились, что причин к неправильной работе нет, то, возможно, ваш источник света отслужил свой срок, количество ртути внутри снизилось до минимума. Необходима замена самой колбы.

Если в лампах перегорает спираль, то это указывает на поломку или повреждение дросселя. Чаще всего – это проблемы или изнашивание изоляции. Как только источник дневного света перестает нормально работать, необходимо его сразу отключить от электричества, и найти причины поломки. Не стоит многократно пытаться включать прибор, так как поломка одного элемента, влечет проблемы в работе или выход из строя и других частей прибора.

Важно понять главное — при установке лампы дневного света, схемами подключения нужно оперировать грамотно. Только в этом случае не возникнет проблем и прибор будет функционировать качественно.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Что такое лампы дневного света? Lampa.ru

У нас в наличии всегда на выбор люминесцентные лампы всех оттенков света и различных производителей

Ежедневно сотрудники отделов продаж нашей группы компаний Lampa.ru получают запросы на «лампы дневного света», при этом часто подразумеваются очень разные потребности под одной и той же формулировкой, что в итоге мы решили написать это разъяснение и выложить статью в сеть Интернет.

Лампой дневного света часто неправильно называют все виды люминесцентных ламп, подразумевая «обычные трубчатые люминесцентные лампы». Это весьма неточно, так как лампа дневного света – это лишь одна из разновидностей люминесцентных ламп, а именно люминесцентная лампа с голубоватым свечением. Существует несколько вариантов цветности света люминесцентных ламп – «голубоватые», «белые», «тёпло-белые» и из них только «голубоватые» можно называть лампами дневного света (daylight), т.к. это лампа, свет которой по своему спектральному составу в видимой области спектра приближается к заданному дневному свету (по СТ МЭК 50(845)-87).

Итак,

Лампы дневного света в правильном толковании (по Советской, Современной энкцилопедиям; по Большому энциклопедическому, Строительному, Политехническому словарям) = разновидность трубчатых люминесцентных ламп, отличающихся голубоватым цветом свечения.

Со времен СССР в России такие лампы отечественного производства называются ЛД (сокращение от Лампа Дневного света) и ЛДЦ (сокращение от Лампа Дневного света с высокой Цветопередачей) , отличающихся следующими характеристиками:

ЛД (лампы дневного света): оттенок «белый с лёгким голубоватым оттенком и высокой светоотдачей, но низкой цветопередачей» = цветовая температура 6400-6500К = примерный эквивалент цветности света по международной маркировке 765.

ЛДЦ, ЛДЦЦ (лампы дневного света, с улучшенной цветопередачей; ЛДЦ — люкс/Lumilux, ЛДЦЦ — де-люк/De Luxe): оттенок «белый с лёгким голубоватым оттенком и относительно низкой светоотдачей, но высокой цветопередачей) = цветовая температура 6500К = примерный эквивалент цветности света по международной маркировке 865 (ЛДЦ) и 965 (ЛДЦЦ).

В Европе пару десятков лет назад такие лампы имели приставку Daylight (англ. дневной свет) или Tageslicht (нем. дневной свет), так же каждый бренд назначал свой цифровой код для обозначения этой цветности (54; 54-765; 765 и другие), однако с начала 2000ых годов европейские производители отставили в сторону описательную часть оттенков света в названии ламп («прохладный» белый свет, холодный белый, голубоватый белый свет, дневной свет, нейтральный белый и похожие альтернативные названия и переводы названий цветностей), т.к. всё чаще возникала путаница у конечных потребителей ламп из-за различных описаний оттенков белого света, которые конкурирующие европейские бренды употребляли для идентичных ламп.

Помогло переходу на единый стандарт обозначения цветностей ламп и европейское законодательство, вносящее новые и новые требования по упорядочиванию номенклатуры ламп и приведения их к единому образцу на всей территории Евросоюза.

Итого на момент написания статьи маркировки цветностей ламп европейских производителей содержат трёхцифровой код (идёт через / после мощности лампы) и обозначает информацию относительно оттенка и качества света:

Первая цифра — индекс цветопередачи Ra (цифры 6-7 обозначают низкую цветопередачу, цифра 8 – улучшенную цветопередачу, цифра 9 – высокую цветопередачу. То есть чем выше первая цифра в маркировке цветности света люминесцентной лампы - тем достоверней цветопередача).

Вторая и третья цифры — указывают на цветовую температуру лампы.

Таким образом маркировка «865» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 6400-6500К (что соответствует лампе дневного света с улучшенной цветопередачей). Маркировка «765» прячет за собой так же лампу дневного света с цветовой температурой 6400-6500К, но с плохой цветопередачей.

Итого: лампы дневного света – это люминесцентные лампы, светящиеся с голубоватым белым светом, то есть характеризующиеся цветовой температурой 6400-6500К.

При этом лампы дневного света, светящиеся видимым голубоватым белым светом, могут быть в трёх вариантах:

1) с низким индексом цветопередачи (российская номенклатура ЛБ = европейские лампы с 765 цветностью света). Не рекомендуется использовать для жилых помещений, запрещены в Евросоюзе для установки в любых помещениях; рекомендуются лишь для установки в производственных и административных помещениях без высоких требований к цветопередаче.

К сожалению, в России по факту используются повсеместно и неверно: от офисов и магазинов, заканчивая даже образовательными заведениями. Компания Lampa.ru настоятельно рекомендует начать использовать для общественных мест, офисов, образовательных люминесцентные лампы только с улучшенными характеристиками цветопередачи и с цветовой температурой тёплых оттенков (830 и 827 цветностей), похожих по свету на лампы накаливания или галогенные лампы накаливания.

2) с улучшенным (выше среднего) индексом цветопередачи (российская номенклатура ЛБЦ = европейские лампы с 865 цветностью света).

3) с высоким индексом цветопередачи (российская номенклатура ЛБЦЦ = европейские лампы с 965 цветностью света).

Итак, с самой главной отличительной характеристикой ламп дневного света – голубоватым оттенком света – и что этот голубоватый свет гарантированно обеспечивается световой температурой 6400-6500К – мы разобрались. Так же мы разобрались, что получить «дневной свет» 6400-6500К можно в трёх видах: с низкой цветопередачей, со средней и с высокой.

Теперь нам нужно определиться, что же является «обычной люминесцентной лампой-трубкой» в понимании российских покупателей.

Из люминесцентных ламп-«трубок» на сейчас в России самые популярные лампы Т8: это лампы с диаметром стеклянной колбы 26мм, с цоколем G13. Мощность лампы коррелируется с длиной лампы: например, «стандартные» люм. лампы для встраиваемого в потолок типа «Амстронг» светильника – это люм. лампы 18W длиной 600мм; люм. лампы 36W уже будут иметь длину 1200мм.

Люминесцентные лампы в колбе Т8 – это самый распространённый на сегодня тип ламп в России.

Надо упомянуть, что в советское время трубки люминесцентных ламп были толще (диаметром колбы 38мм для устаревшей «советской» Т12 лампы вместо 26мм современных Т8 ламп) и энергозатратнее (20W вместо современных 18W, 38W вместо современных 36W и т.д.) , однако такой же длины и с таким же цоколем, что и сейчас. Сейчас найти лампу типа Т12 почти невозможно и бессмысленно, т.к. лампы Т8 по сравнению с ними потребляют меньше энергии и дают столько же цвета, имеют такую же длину и цоколь, имеют больший выбор цветностей света и их характеристик цветопередачи, более распространены и имеются всегда в наличии, дешевле.

Так уже устарела колба Т10 (диаметр 32мм) и полностью заменилась на колбу Т8 с диаметром 26мм повсеместно.

Люминесцентные лампы в колбе Т5 – наиболее современный «нового века» тип ламп, применяемых в сфере общего освещения. На сейчас это последнее поколение люминесцентных источников света в колбе диаметром 16мм, предназначенное для работы только с ЭПРА, и которое не существует в варианте индекса цветопередачи ниже 80 (то есть лампы Т5 как именно «продвинутые» – по умолчанию создаются с улучшенной цветопередачей либо с высокой цветопередачей). В Евросоюзе, в США и в Японии производители практически полностью перешли на выпуск ламп Т5. Производители светильников придумали массу тонких светильников с умной электроникой, реагирующей на количество естественного света, поступающего через окна, с датчиками движения, с возможностью управления световым потоком ламп и т.п. Все эти современные улучшения, если и делать их на основе люминесцентного света, и в красивом дизайне - то только на люм. лампах колбы Т5.

Потенциально можно купить лампу дневного света и в колбе Т5: это будет тонкая лампа-трубка 16мм толщиной, с цоколем G5, только улучшенной цветности 865, всё с той же цветовой температурой 6500K, в двух видах – в более энергосберегающем варианте (HE лампы) или в более мощном и ярком варианте (HO лампы).

Люминесцентные лампы в колбе Т4 – это исключительно находка китайских производителей, всегда готовых создать что угодно по требованию покупателей, а в данном случае – конкретно трубку диаметром 12,5мм. На момент написания статьи такой тип ламп не производится современными европейскими брендами, т.к. пока что они не могут гарантировать качество ламп с такими параметрами мощности и длины/диаметра колбы. Что бы купить китайскую лампу в колбе Т4 дневного света – надо заказать лампу с цветностью 6500К либо с маркировкой 765 или 760 – тут, как мы знаем, у китайцев всегда есть варианты.

Существуют и другие колбы даже у трубчатых люминесцентных ламп, но в разрезе разъяснения про лампы дневного света на уже упомянутом можно остановиться.

Коротко:

Дорогие клиенты, мы с радостью продадим и доставим вам именно те люминесцентные лампы, которые больше всего подходят для ваших целей освещения.

Если хотите именно осознанно лампу дневного света – то есть голубоватую 6400-6500К – хорошо, у нас всегда они есть! Определитесь с уровнем индекса цветопередачи, с колбой лампы, сообщите нашим консультантам и менеджерам по продажам или выберете самостоятельно на нашем сайте:

Стандартные «BASIC» Т8 лампы дневного света с плохой цветопередачей, классические лампы дневного света:

L 18 W/765 G13 6400K ЛАМПА ЛЮМ. OSRAM 

L 30W/765 G13 6500К ЛАМПА ЛЮМ. OSRAM 

L 36 W/765 G13 6400K ЛАМПА ЛЮМ. OSRAM 

L 58W/765 RUSSIA G13 6400K ЛАМПА ЛЮМ. OSRAM 

ЛАМПА ЛИНЕЙНАЯ ЛЮМИНЕСЦЕНТНАЯ GE F18W/T8/54/GE/SL/1-25 

ЛАМПА ЛИНЕЙНАЯ ЛЮМИНЕСЦЕНТНАЯ GE F36W/T8/54/GE/SL/1-25 

TL-D 18W/54-765 G13 ЛАМПА ЛЮМ. PHILIPS

TL-D 30W/54-765 G13 ЛАМПА ЛЮМ. PHILIPS 

TL-D 36W/54-765 G13 ЛАМПА ЛЮМ. PHILIPS 

TL-D 58W/54-765 G13 ЛАМПА ЛЮМ. PHILIPS

FL18W/765 G13 6500K ЛАМПА ЛЮМ. ЛИСМА

ЛД 18 D=27MM G13 6500K ЛАМПА ЛЮМ. ЛИСМА

FL36W/765 G13 6500K ЛАМПА ЛЮМ. ЛИСМА 

Улучшенные Т8 лампы дневного света с хорошей цветопередачей:

L 18 W/865 LUMILUX RUSSIA G13 6500K ЛАМПА ЛЮМ. OSRAM 

ЛАМПА ЛЮМИНЕСЦЕНТНАЯ OSRAM L 30 W/865 LUMILUX G13 6500К

L 36 W/865 LUMILUX RUSSIA G13 6500K ЛАМПА ЛЮМ. OSRAM 

L 58 W/865 LUMILUX RUSSIA G13 6500K ЛАМПА ЛЮМ. OSRAM 

ЛАМПА ЛЮМИНЕСЦЕНТНАЯ OSRAM L 58 W/865 

ЛАМПА ЛИНЕЙНАЯ ЛЮМИНЕСЦЕНТНАЯ SYLVANIA T8 LUXLINE PLUS SPECIAL LENGTH DAYLIGHT DELUXE (865) F30ВТ/865 

ЛАМПА ЛИНЕЙНАЯ ЛЮМИНЕСЦЕНТНАЯ SYLVANIA T8 LUXLINE PLUS DAYLIGHT DE LUXE (865) F70ВТ/865 

Стандартные (устаревшие) Т12 и T10 лампы дневного света, «советские» лампы дневного света:

FL20W/765 G13 3500К ЛАМПА ЛЮМ. ЛИСМА 

FL40W-32/765 G13 6500K ЛАМПА ЛЮМ. ЛИСМА 

ЛД 40 D=38,5MM G13 6500K ЛАМПА ЛЮМ. ЛИСМА 

ЛД 20-2 D=32MM G13 6400К ЛАМПА ЛЮМ. ЛИСМА 

ЛД 40-2 D=32MM G13 6500K ЛАМПА ЛЮМ. ЛИСМА 

ЛД 40-2 ТОМСК 

Однако хотим заметить: да, 6400-6500К Т8 люм. лампы низкой цветопередачи (ЛД, L 18/765 Osram, F 18/765 GE, TLD 18/765 Philips и т.п.) на сейчас – самые продаваемые по всей России, и, безусловно, одни из самых доступных по наличию и цене.

Но эти лампы с такими показателями не были рекомендованы для помещений, в которых постоянно работают или учатся или живут люди, даже в СССР время, когда технологии были менее развиты. Даже десятки лет назад отмечалось, что такие лампы подходят для производственных помещений, а для жилых помещений, для офисов, школ, университетов, магазинов – имеет смысл использовать лампы с улучшенной цветопередачей, тёплых оттенков (рекомендуем 3000К или 2700К), обязательно в светильниках с ЭПРА.

Под лампами улучшенной цветопередачи тёплых оттенков света (приближенных к желтоватому свету ламп накаливаний) люди и предметы выглядят лучше, естественнее, а использование ЭПРА создаёт комфорт для глаз людей, занимающихся или работающих или покупающих в этом помещении.

В рамках популяризации этого факта (а значит, что и в рамках улучшения качества проживания в России) наша группа компаний Lampa.ru совместо с производителем ламп Osram разрабатывает маркетинговый проект, по которому клиентам, по-прежнему выбирающим лампы с низкой цветопередачей холодных оттенков будем давать бесплатно на пробу несколько ламп Osram Lumilux; ну а покупателям Osram Lumilux мы уже полгода дарим подарки, регулярно запуская поддерживающие акции, как, например, вот эта акция «Купи Lumilux – получи карту М-Видео».

Спасибо за внимание,

хороших вам покупок!

С уважением,

команда Lampa.ru

Все статьи

lampa.ru

Как зажечь лампу дневного света без дросселя: практические нюансы

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принцип действия лампы дневного света

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Газ.
  9. Нити накала лампы.
  10. Ультрафиолетовое излучение.
  11. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРАНа рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZВ схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартераЕсли требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накалаДля дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пускаКак видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодамиПараметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питанияДля вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

electry.ru

Лампы дневного света

Лампы дневного света, или как их еще называют – люминесцентные и энергосберегающие, это лампы современности. С точки зрения потребителя их главный плюс состоит в том, что они позволяют снизить расход электричества в разы. Если сравнивать с обычной лампочкой накаливания, лампа дневного света даст освещение той же мощности, затратив при этом на 80% меньше электроэнергии.

Чтобы ответить на вопрос, как такое возможно, нужно понять принцип работы дневной лампы. Итак, лампа представляет собой трубку, наполненную парами ртути и инертным газом, на стенки которой нанесен слой люминофора. Электрический разряд заставляет пары ртути излучать ультрафиолет, и люминофор под воздействием ультрафиолета начинает светиться. Как видите, приведение процесса в действие требует не больших затрат электричества.

Цвет свечения ламп дневного света

В отличие от ламп накаливания, лампы дневного света дают три варианта свечения: холодный свет, теплый и нейтральный. При выборе лампы стоит задуматься о температуре свечения, поскольку именно этот показатель дает комфорт глазу, а выбор напрямую зависит от места использования лампы. Если мы выбираем потолочные лампы дневного света в офис, лучше остановиться на холодном (белом) или нейтральном свете, если в спальню, то предпочтительнее теплый (желтый) свет.

Плюсы и минусы использования ламп дневного света

К безоговорочным плюсам в использовании люминесцентных ламп можно отнести следующее:

  1. Как уже говорилось выше, мощность ламп дневного света гораздо ниже ламп накаливания, при этом освещенность мы получаем такую же. К примеру, лампа в 12Вт равна лампе в 60Вт.
  2. Срок службы в среднем в 7 раз больше срока службы «лампочек Ильича».
  3. Энергосберегающие лампы не нагреваются во время работы.
  4. Лампы дневного света не мерцают, давая тем самым меньшую нагрузку на глаза.
  5. На все лампы дневного света идет заводская гарантия.

В категорию минусов тоже есть, что вписать:

  1. Стоимость энергосберегающей лампы выше стоимости обычной, не смотря на это, в конечном счете, ее приобретение все равно оказывается выгодным, если она прослужит весь заявленный срок.
  2. Из-за скачков напряжения срок службы заметно сокращается. К примеру, если напряжение в сети увеличится на 6%, лампа прослужит в 2 раза меньше, увеличение на 20% повлечет за собой то, что лампа отработает лишь 5% срока своей службы.
  3. Энергосберегающие лампочки немного объемнее ламп накаливания, поэтому велика вероятность, что в часть светильников они не поместятся, а из части плафонов будут не эстетично выглядывать.
  4. Нередко можно услышать жалобы от потребителей, почему моргают лампы дневного света в выключенном состоянии. К счастью, это разрешимая проблема, в большинстве случаев подобное происходит из-за светодиода в выключателе, если выключатель заменить, то проблема исчезнет.

Где таится опасность?

Вредны ли лампы дневного света – наверное, этим вопросом не задавался только ленивый. Разные исследования показывают разные результаты, но все сходятся в одном – если человечество не поймет, как важна грамотная утилизация ламп дневного света, они, несомненно, рано или поздно принесут вред. Проблема заключается в том, что в стеклянной трубке лампы содержатся пары ртути. Допустим, если одна лампа разобьется в квартире, ничего особо страшного не произойдет, достаточно будет проветрить помещение. Если же все лампы из наших квартир будут оказываться в мусорных контейнерах, разбиваться и выпускать пары ртути – это уже будет настоящая опасность. Поэтому не поленитесь, найдите время и поинтересуйтесь, где в вашем районе находятся пункты утилизации.

 

womanadvice.ru

Лампы дневного света - это... Что такое Лампы дневного света?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего - переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Лампа дневного света - это... Что такое Лампа дневного света?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего - переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Лампа дневного света - это... Что такое Лампа дневного света?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего - переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

veter.academic.ru