Единицы измерения сила лоренца. Закон Ампера. Сила Лоренца
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Сила Лоренца. Единицы измерения сила лоренца


Закон Ампера. Сила Лоренца — Мегаобучалка

Причина возникновения сил магнитного взаимодействия токов (§ 5.21) заключается в появлении вокруг проводников с током магнитного поля (§ 5.22). Это магнитное поле в свою очередь действует на второй проводник с током. Сила взаимодействия двух контуров с током конечных размеров складывается из взаимодействия отдельных элементов тока. Она зависит от размеров контуров, их формы и взаимного расположения, и поэтому сформулировать общий закон взаимодействия контуров с током нельзя. Однако такой закон можно дать для элементов тока.

Оба контура с током мысленно разбиваем на элементы тока. Применяя закон Био-Савара-Лапласа совместно с принципом суперпозиции, довольно просто рассчитать конкретное поле, создаваемое одним из контуров в точке пространства, где располагается элемент тока другого контура. Затем, используя принцип суперпозиции для силы, можно рассчитать результирующую силу магнитного взаимодействия контуров с током. Согласно третьему закону Ньютона силы взаимодействия двух контуров равны по модулю и противоположны по направлению.

Результаты опытов Ампера и последующих многочисленных исследований можно сформулировать следующим образом. Сила , действующая на элемент тока I× , равна

 

= , (24.1)

 

где - вектор магнитной индукции.

Соотношение (24.1) было установлено экспериментально Ампером и носит название закона Ампера. Полную силу, действующую на проводник, можно найти суммированием элементарных сил на отдельных элементах проводника, т.е. = . Силы, действующие на токи в магнитном поле, называют амперовыми или силами Ампера.

Если имеется прямолинейный отрезок провода и магнитная индукция во всех его точках постоянна, то сила Ампера согласно (24.1):

 

= . (24.2)

 

Величина этой силы равна

 

F = I×l×B×sina, (24.3)

 

где a - угол между векторами и .

Направление силы перпендикулярно к и и подчиняется правилу правого винта: при движении головки винта от вектора к вектору поступательное движение винта происходит в направлении силы . Взаимное расположение векторов , и показано на рисунке 33.

Закон Ампера позволяет определить единицу измерения магнитной индукции. Предположим, что проводник длиной l с током I перпендикулярен вектору магнитной индукции. Тогда закон Ампера (24.3) запишется в виде F = I×l×B, и

 

B = ,

 

откуда определяем, что 1 Тл - магнитная индукция такого однородного магнитного поля, которое действует с силой в 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по этому проводнику протекает ток в 1 А, т.е. 1 Тл = 1 Н/(А×м).

Одним из методов измерения магнитной индукции В является использование зависимости электрического сопротивление висмута от величины индукции магнитного поля (примерно на 5 % на каждую десятую долю тесла). Помещая предварительно проградуированную висмутовую спираль в магнитное поле, и измеряя относительное изменение ее сопротивления, можно определить магнитную индукцию поля. Следует отметить, что у других металлов электрическое сопротивление также возрастает в магнитном поле, но в гораздо меньшей степени. У меди, например, увеличение сопротивления примерно в 104 раз меньше, чем у висмута.

Применим закон Ампера для вычисления силы взаимодействия двух находящихся в вакууме параллельных бесконечно длинных прямых токов. Если расстояние между токами R (рисунок 34), то каждый элемент тока I2 будет находиться в магнитном поле, индукция которого равна В1 = (m0/2p)×(I1/R) (см. формулу (22.4)). Угол a между элементами тока I2 и вектором прямой. Следовательно, согласно (24.3) на единицу длины (l2 = 1 м) тока I2 действует сила

 

F2 = I2l2B1 = I1I2. (24.4)

 

Нетрудно убедиться, что токи, одинаково направленные, притягиваются, а противоположно направленные – отталкиваются. Для силы F1, действующей на единицу длины тока I1, получается аналогичное (24.4) выражение.

В § 1.1 уже отмечалось, что единица силы тока (ампер) – определяется через магнитное взаимодействие токов. Если в (24.4) положить I1 = I2 = 1 А, а R = 1 м, то можно дать следующее определение: 1 А – сила постоянного тока, протекающего по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывающего между этими проводниками силу, равную 2×10-7 Н на каждый метр длины. Из этого определения следует, что магнитная постоянная должна иметь значение m0 = 4p×10-7 единицы системы СИ.

Так как всякий ток есть движение заряженных частиц (электронов или ионов), то очевидно, что на движущийся заряд в магнитном поле действует сила. Нетрудно определить величину этой силы. На проводник длиной l с током I в однородном магнитном поле с индукцией В действует сила Ампера

 

FA = I×l×B×sina,

 

где a - угол между векторами и .

С другой стороны

 

I×l = Nev,

 

где N – полное число движущихся заряженных частиц, е – заряд частицы (носителя тока), v - скорость движения частиц.

Учитывая, что направление совпадает с направлением скорости движения положительных частиц (с направлением тока), мы можем выражение для силы представить в следующем виде:

 

FА = Nev×B×sina,

 

где a - угол между векторами и .

Сила, действующая на проводник, пропорциональна полному числу движущихся частиц, а значит, сила, действующая на одну частицу, равна:

 

F = ev×B×sina. (24.5)

 

Заменяя в (24.5) заряд носителя тока на q, получаем

 

F = qv×B×sina. (24.6)

 

Полученный результат можно выразить в векторной форме:

 

= . (24.7)

 

Направление этой силы перпендикулярно к плоскости, в которой лежат векторы и , и подчиняется правилу правого винта. Скорость в этой формуле есть скорость заряда относительно магнитного поля. Если заряд q положителен, направление силы совпадает с направлением векторного произведения . В случае отрицательного заряда q направления и противоположны. Сила всегда перпендикулярна скорости движения заряженной частицы, поэтому она изменяет только направление этой скорости, не изменяя ее модуля. Следовательно, сила работы не совершает. Иными словами, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изменяется. Причем на покоящуюся заряженную частицу ( =0) магнитное поле не действует ( =0).

Если одновременно имеются электрическое и магнитное поля, сила, действующая на заряженную частицу, равна:

 

= q + . (24.8)

 

Это выражение было получено Лоренцем путем обобщения экспериментальных данных, и носит название силы Лоренца.

Сила Лоренца складывается из двух слагаемых: = + , где = q и = , которые называют, соответственно, электрической и магнитной составляющими силы Лоренца. Разделение полной силы Лоренца на электрическую и магнитную составляющие зависит от выбора системы отсчета. Без указания системы отсчета такое разделение не имеет смысла.

megaobuchalka.ru

Сила Лоренца - это... Что такое Сила Лоренца?

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Уравнение (единицы СИ)

Заряженная частица

Сила Лоренца f действующая на заряженную частицу (заряда q) при движении (с постоянной скоростью v). E поле и B поле меняются в пространстве и во времени.

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитном B полях, такова:

где × векторное произведение. Все величины выделенные жирным являются векторами. Более явно:

где r — радиус-вектор заряженной частицы, t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда

Сила Лоренца (на единичный 3-объём) f действующая на непрерывное распределение заряда (зарядовая плотность ρ) при движении. 3-плотность потока J соответствует движению заряженного элемента dq в объеме dV .

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где dF — сила, действующая на маленький элемент dq.

Ковариантная запись

4-сила выражается через вектор 4-скорости частицы по формуле

, где  — 4-сила, q — заряд частицы,  — тензор электромагнитного поля,  — 4-скорость.

Частные случаи

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости , намного меньшей скорости света, круговая частота не зависит от :

Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол , то траекторией движения частицы является винтовая линия с радиусом и шагом винта :

Применение силы Лоренца

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне

В электроприборах

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД генераторах.

В ускорителях заряженных частиц

Сила Лоренца также используется в ускорителях заряженных частиц, задавая орбиту, по которой движутся эти частицы.

В вооружении

  • См. рельсотрон, или, как его ещё называют, рэйлган («рельсовая пушка»)

Другие применения

Примечания

  1. ↑ Такая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолго до Лоренца — Закон Кулона был открыт в 1785 году. Лоренц же получил общую формулу для действия и электрического и магнитного полей, отличающуюся от прежней как раз выражением для магнитного поля. Поэтому то и другое, вполне логично, называют его именем.
  2. ↑ Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.

См. также

dal.academic.ru

Сила Лоренца - это... Что такое Сила Лоренца?

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Уравнение (единицы СИ)

Заряженная частица

Сила Лоренца f действующая на заряженную частицу (заряда q) при движении (с постоянной скоростью v). E поле и B поле меняются в пространстве и во времени.

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитном B полях, такова:

где × векторное произведение. Все величины выделенные жирным являются векторами. Более явно:

где r — радиус-вектор заряженной частицы, t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда

Сила Лоренца (на единичный 3-объём) f действующая на непрерывное распределение заряда (зарядовая плотность ρ) при движении. 3-плотность потока J соответствует движению заряженного элемента dq в объеме dV .

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где dF — сила, действующая на маленький элемент dq.

Ковариантная запись

4-сила выражается через вектор 4-скорости частицы по формуле

, где  — 4-сила, q — заряд частицы,  — тензор электромагнитного поля,  — 4-скорость.

Частные случаи

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости , намного меньшей скорости света, круговая частота не зависит от :

Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол , то траекторией движения частицы является винтовая линия с радиусом и шагом винта :

Применение силы Лоренца

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне

В электроприборах

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД генераторах.

В ускорителях заряженных частиц

Сила Лоренца также используется в ускорителях заряженных частиц, задавая орбиту, по которой движутся эти частицы.

В вооружении

  • См. рельсотрон, или, как его ещё называют, рэйлган («рельсовая пушка»)

Другие применения

Примечания

  1. ↑ Такая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолго до Лоренца — Закон Кулона был открыт в 1785 году. Лоренц же получил общую формулу для действия и электрического и магнитного полей, отличающуюся от прежней как раз выражением для магнитного поля. Поэтому то и другое, вполне логично, называют его именем.
  2. ↑ Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.

См. также

dikc.academic.ru

Лоренца сила - Википедия

  Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон КулонаТеорема ГауссаЭлектрический дипольный моментЭлектрический зарядЭлектрическая индукцияЭлектрическое полеЭлектростатический потенциал
Магнитостатика
Закон Био — Савара — ЛапласаЗакон АмпераМагнитный моментМагнитное полеМагнитный потокМагнитная индукция
Электродинамика
Векторный потенциалДипольПотенциалы Лиенара — ВихертаСила ЛоренцаТок смещенияУниполярная индукцияУравнения МаксвеллаЭлектрический токЭлектродвижущая силаЭлектромагнитная индукцияЭлектромагнитное излучениеЭлектромагнитное поле
Электрическая цепь
Закон ОмаЗаконы КирхгофаИндуктивностьРадиоволноводРезонаторЭлектрическая ёмкостьЭлектрическая проводимостьЭлектрическое сопротивлениеЭлектрический импеданс
Ковариантная формулировка
Тензор электромагнитного поляТензор энергии-импульса4-потенциал4-ток
Известные учёные
Генри КавендишМайкл ФарадейНикола ТеслаАндре-Мари АмперГустав Роберт КирхгофДжеймс Клерк (Кларк) МаксвеллГенри Рудольф ГерцАльберт Абрахам МайкельсонРоберт Эндрюс Милликен
См. также: Портал:Физика

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью v{\displaystyle \mathbf {v} }

encyclopaedia.bid

Сила Лоренца - Википедия

  Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон КулонаТеорема ГауссаЭлектрический дипольный моментЭлектрический зарядЭлектрическая индукцияЭлектрическое полеЭлектростатический потенциал
Магнитостатика
Закон Био — Савара — ЛапласаЗакон АмпераМагнитный моментМагнитное полеМагнитный потокМагнитная индукция
Электродинамика
Векторный потенциалДипольПотенциалы Лиенара — ВихертаСила ЛоренцаТок смещенияУниполярная индукцияУравнения МаксвеллаЭлектрический токЭлектродвижущая силаЭлектромагнитная индукцияЭлектромагнитное излучениеЭлектромагнитное поле
Электрическая цепь
Закон ОмаЗаконы КирхгофаИндуктивностьРадиоволноводРезонаторЭлектрическая ёмкостьЭлектрическая проводимостьЭлектрическое сопротивлениеЭлектрический импеданс
Ковариантная формулировка
Тензор электромагнитного поляТензор энергии-импульса4-потенциал4-ток
Известные учёные
Генри КавендишМайкл ФарадейНикола ТеслаАндре-Мари АмперГустав Роберт КирхгофДжеймс Клерк (Кларк) МаксвеллГенри Рудольф ГерцАльберт Абрахам МайкельсонРоберт Эндрюс Милликен
См. также: Портал:Физика

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью v{\displaystyle \mathbf {v} }

encyclopaedia.bid