Проверка емкости конденсатора. Проверка и замена пускового конденсатора
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Как проверить конденсатор? Проверка емкости конденсатора


Проверка и замена пускового конденсатора

 

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки - между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

 

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

 

Основные параметры конденсаторов

 

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В - 10000 часов
  • 450 В -  5000 часов
  • 500 В -  1000 часов

 

Проверка пускового и рабочего конденсаторов

 

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

 

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

 

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

 

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

 

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

   

 

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором - менее одной секунды, вторым - более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

 

Замена и подбор пускового/рабочего конденсатора

 

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс "+" и минус "-" и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения - термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+...Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

 

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

 

masterxoloda.ru

Как проверить конденсатор? - Мужик в доме.Ру

Одним из самых слабых мест электронных устройств являются электролитические конденсаторы. Зачастую выход из строя полупроводниковых приборов – это довольно-таки редкое явление. Если сравнивать электронный прибор с человеческим организмом, то можно сказать, что вся полупроводниковая электроника вкупе с печатной платой и резисторами – это аналог скелета, а конденсаторы и индуктивности – это мышцы. Растяжение или повреждение мышц в человеческом организме приводит к тому, что человек едва-едва может нормально двигаться. После легкой травмы у человека кости, как привило, целы, а мышцы растянуты или порваны. Аналогичная ситуация складывается и с электроникой: с виду весь «скелет» целый – транзисторы и микросхемы нормальные, а схема не работает из-за какой-нибудь связующей «мышцы», к примеру, электролитического конденсатора. Цель данной публикации – дать базовые диагностические знания, необходимые для первичной диагностики электронного оборудования любой конструктивной сложности.

Все в этом мире не идеально

Для корректной проверки конденсатора необходимы первичные знания о том, чем реальные конденсаторы, которые стоят в реальных электронных приборах, отличаются от идеальных конденсаторов, которые существуют только в умах математиков и физиков. Идеального, как известно, нет ничего. Конденсаторы – это самый яркий пример этого умозаключения. Та простота, с которой объясняют принцип действия и устройство конденсатора учителя физики, как правило, не имеет ничего схожего с тем, что происходит в реальных электронных устройствах с электролитическими конденсаторами. Сразу отметим, что под идеальным конденсатором мы будем понимать такой конденсатор, который имеет нулевое ESR, бесконечно высокое сопротивление между обкладками, а также его емкость никаким образом не зависит от частоты тока, температуры окружающей среды, напряжения. Такой конденсатор можно лишь представить в виде идеализированной математической модели, к которой нужно стремиться производителям радиоэлектронных компонентов. Реальный конденсатор выглядит гораздо сложнее. Помимо полезной электрической ёмкости в его конструкцию вмешиваются некие виртуальные сопротивления, которые подразделяются на эквивалентное последовательное сопротивление, обозначаемое ESR, и внутреннее сопротивление. В хороших конденсаторах параметр ESR должен быть практически равным если не нолю, то нескольким десятым долям 1-го Ома. Величина внутреннего сопротивления должна быть равна нескольким МОм (как правило, не более 20 МОм). Именно эти паразитные сопротивления мешают конденсатору выполнять свои прямые обязанности – быстро накапливать энергию, сохранять ее в неизменном количестве, а также отдавать настолько молниеносно, насколько это вообще теоретически возможно. В реальности высокое значение параметра ESR мешает конденсатору быстро заряжаться и разряжаться, а не бесконечное сопротивление диэлектрического материала межу обкладками конденсатора неизбежно приводит к утечкам, то есть энергия постоянно рассеивается. В идеале конденсатор, будучи заряженным до 12 Вольт, должен был бы сохранить эти 12 Вольт и через час, и через 2, и через сутки, и через год. В реальности такой конденсатор разряжается через самого себя в течение считанных минут. Также параметр емкости может «плавать» в зависимости от температурных режимов работы конденсатора, а также от амплитуды и формы напряжения между обкладками.

Как проверить конденсатор?

Сразу оговоримся, что проверять конденсатор нужно только вне платы. Параллельно соединенные резисторы, транзисторы и микросхемы вряд ли смогут дать нам измерить внутреннее сопротивление максимально точно. Первичная диагностика на фатальное увеличение ESR, на обрыв, на короткое замыкание, на сильную потерю емкости и т.п. – вот тот непреодолимый диагностический максимум, который мы сможем достигнуть, не выпаивая конденсатор из платы. Реально оценить все параметры «здоровья» конденсатора можно лишь выпаяв его из платы. Перед проверкой конденсатора его необходимо в обязательно прядке разрядить, закоротив его рабочие выводы пинцетом. Помните, что электрического заряда, запасенного им в процессе работы в составе электронного прибора, бывает вполне достаточно, чтобы вывести любой ESR- или LC-метр из строя. Методик для проверки конденсаторов великое множество, но стоит помнить, что ни одна из них не может в полной степени продиагностировать все известные дефекты. Начнем с самого простого, а именно с проверки при помощи мультиметра или тестера.

Если речь идет об электролитическом конденсаторе, то необходимо помнить о правильной полярности: подключаем красный щуп прибора к положительному терминалу конденсатора, а черный – к минусовому. Определить полярность конденсатора можно по обозначению на корпусе, выполненному в виде полоски. Аналоговый или цифровой прибор нужно переключить на Омы, то есть в режим измерения сопротивления. Как правило, выставляется предел 20 МОм или 200 МОм, если ваш прибор позволяет измерять столь высокие величины электрического сопротивления. С самого начала прибор должен показать нулевое сопротивление, а затем оно должно медленно, но верно увеличиваться до нескольких МОм. Особенно приятно следить за этим процессом, работая за старым-добрым аналоговым тестером, где вместо мигающего дисплея установлена стрелочная индикация. Сначала стрелка должна качнуться в сторону малого сопротивления, а потом медленно уходить в сторону бесконечного электрического сопротивления. С помощью цифрового мультиметра можно произвести аналогичные измерения, только вместо движения стрелки вы будете наблюдать за цифрами. Произведя измерения таким манером, вы сами того не понимая, заряжайте конденсатор от батарейки, которая входит в состав вашего измерительного прибора. Обязательно засеките время, которое занимает полный заряд конденсатора. Запомните это значение. Далее возьмите эталонный или заведомо исправный конденсатор аналогичной марки, номинала, вольтажа и допуска, дабы произвести аналогичный тест. Сравнив время заряда заведомо исправного конденсатора с временем заряда тестируемого конденсатора, вы узнаете, насколько изменился параметр его емкости. Безусловно, данный метод не гарантирует 100% гарантии исправности тестируемого конденсатора, хотя адекватную проверку на обрыв, на короткое замыкания, на потерю емкости он все-таки дает. Короткое замыкание выдаст нулевое или малое сопротивление. Обрыв – бесконечное сопротивление на всех этапах тестирования.

Далее можно порекомендовать проверить, насколько быстро тестируемый конденсатор теряет заряд. Используя лабораторный блок питания, зарядим конденсатор до напряжения, которое он заведомо должен выдержать. Если на корпусе написано 6.3В, то заряжать до 7 В – просто преступно. Зарядите его, к примеру, до 5 вольт, а затем подсоедините тестер в режиме вольтметра, и проследите, как будет изменяться напряжение. Сравнив время разряда с эталонными параметрами для такого конденсатора, вы поймете, настолько исправен такой радиокомпонент. Проверка под рабочим напряжение может выявить дефекты, которые никаким образом себя не проявляли при проверке либо на тестере, либо на LC-метре. Поэтому не забывайте, что в реальных конденсаторах важные параметры изменяются от частоты, от напряжения, от температуры и т.п.

Завершающим этапом в диагностике может стать проверка параметров ESR и текущей емкости. Для этого используется специальный ESR-метр, к примеру, прибор ESR-micro v4.0s прекрасно справится с этой задачей. Либо через микро панельку на лицевой стороне прибора, либо через специальные щупы подключите тестируемый конденсатор к прибору ESR-micro v4.0s. За считанные секунды прибор максимально точно переделит параметр последовательного эквивалентного сопротивления, а также укажет, какая сейчас у конденсатора емкость.

Помимо вышеприведенных диагностических приемов существует великое множество уловок, связанных с включением тестируемого конденсатора в самодельные измерительные приборы, генераторы звуковой частоты и т.п. Лучшее тестирование – это поставить тестируемый конденсатор в аналогичные условия, т.е. на него должно подаваться тоже напряжение и по амплитуде, и по частоте, которое должно подаваться в штатном режиме его работы. Существуют ситуации, когда один и тот же конденсатор может вполне нормально работать в одной схеме, а в другой — полностью отказаться функционировать. Поэтому помните, что наилучший ремонт – замена всех электролитических конденсаторов, которые проработали более 5-6 лет.

muzhik-v-dome.ru

Сайт ЛОМАСТЕР - Как проверить конденсатор

Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.

Проверка конденсаторов с помощью омметра

Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x это будет предел 2M (2000k), то бишь, 2 Мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.

Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.

При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.

Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.

Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов).

При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.

Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.

Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.

Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.

На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.

Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.

Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. К таким мультиметрам относиться мультиметр Victor VC9805A+, который имеет 5 пределов измерения ёмкости:

20 нФ (20nF)200 нФ (200nF)2 мкФ (2uF)20 мкФ (20uF)200 мкФ (200uF)

Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый "взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.

lomaster.at.ua