Применение тлеющего разряда. Тлеющий разряд. Общее описание тлеющего разряда.
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Различные типы самостоятельного разряда. Применение тлеющего разряда


Применение - тлеющий разряд - Большая Энциклопедия Нефти и Газа, статья, страница 1

Применение - тлеющий разряд

Cтраница 1

Применение тлеющего разряда в препаративной химии ограничено в том случае, если разряду должен подвергаться газ, который сильно разъедает металл электродов.  [2]

Применение тлеющего разряда при газофазном диффузионном насыщении позволяет во много раз увеличить скорость получения покрытия и снизить температуру его образования, так как основа материала при этом испытывает воздействие более низких температур и в течение более короткого времени, чем при обычной технологии газофазного насыщения. Нет необходимости говорить о том, насколько это важно в ряде случаев при обработке ответственных конструкционных изделий. Наиболее подробно изучен процесс азотирования и цементации металлов с использованием тлеющего разряда [ 115; 116; 14, с. В последнее время начаты исследования по насыщению поверхности металлов в тлеющем разряде и другими элементами, например кремнием и алюминием [ 15, с. При диффузионном насыщении металлов в тлеющем разряде достигается довольно высокий коэффициент использования электрической энергии, которая почти полностью расходуется на ионизацию газовой среды и нагрев до нужной температуры обрабатываемой детали катода. Небольшая часть энергии тратится на конвекцию газовой среды и теплопередачу на стенки газовой камеры.  [3]

В этом отношении значительно удобнее применение тлеющего разряда, позволяющего более гибко и тонко регулировать процесс. Для тлеющего разряда характерно, что температура электронов намного выше температуры газа и, вследствие этого, в нем можно избежать пагубного обратного ( вторичного) действия высокой температуры. Необходимость применения пониженного давления и связанное с этим увеличение объема аппаратуры несколько затрудняет промышленное использование тлеющего разряда.  [4]

В работе [12] показано, что без применения тлеющего разряда прослойки, обогащенные углеродом, образуются в результате адсорбции его поверхностью растущего осадка и вытеснения на фронт кристаллизации.  [6]

Сопоставляя кривые 1 и 2 на рис. 98, можно заметить, что применение тлеющего разряда примерно в 3 раза ускоряет процесс роста диффузионного слоя.  [8]

С целью удовлетворения этих повышенных требований были разработаны детекторы ионизационного типа, среди которых важнейшими являются детекторы следующих категорий: а) пламенные, б) с применением радиоактивного р-излучения, в) с применением тлеющего разряда, г) с применением термоионной эмиссии, д) с применением радиочастотного разряда. Поскольку было бы практически нецелесообразно подробно описывать в последующих разделах книги все эти детекторы, в дальнейшем изложении основное внимание уделяется принципу их действия и рабочим характеристикам, а также имеющимся сообщениям об их поведении в условиях эксплуатации.  [9]

Недостатками И являются значит, мощность поджига и вероятность ( порядка 5 - 10 - е) пропусков зажигания. Применение тлеющего разряда позволяет создавать приборы с холодным катодом, равномерно светящимися поверхностями желательной конфигурации, токами разряда порядка единиц и десятков мА, временами развития и прекращения разряда в единицы - десятки мкс.  [11]

Первый из двух важных недостатков люминесцентных ламп-сложность зажигания. Для зажигания низковольтных ламп служит стартер, действие которого основано на применении реле тлеющего разряда.  [13]

Рабочее напряжение между анодом, которым может служить контейнер, и катодом поддерживается в пределах 600 - 800 В. В результате достигается более высокое качество азотированного слоя; процесс азотирования идет интенсивно без применения печей и водорода. Применение тлеющего разряда позволяет устранить неравномерность диффузионных слоев, обычно получаемых на деталях сложных конфигураций при сохранении ламинарных газовых потоков в рабочей камере. Обеспечивается равномерный нагрев поверхности и одинаковый приток диффундирующего элемента.  [15]

Страницы:      1    2

www.ngpedia.ru

Виды разрядов и их применение

  Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа – коронный разряд.  Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается  шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора.  Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля.  Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле.

  Применение коронного разряда.1)   Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной. Внутри стеклянной трубки содержатся два электрода: металлический цилиндр и висящая по его оси тонка металлическая проволока. Электроды присоединены к электрической машине. Если продувать через трубку струю дыма (или пыли) и привести в действие машину, то, как только напряжение сделается достаточным для образования короны, выходящая струя воздуха станет совершенно чистой и прозрачной, и все твердые и жидкие частицы, содержащиеся в газе, будут осаждаться на электродах. Объяснение опыта заключается в следующем. Как только у проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы, соударяясь с частицами пыли, «прилипают» к последним и заряжают их. Так как внутри трубки действует сильное электрическое поле, то заряженные частицы движутся под действием поля к электродам, где и оседают. Описанное явление находит себе в настоящее время техническое применение для очистки промышленных газов в больших объемах от твердых и жидких примесей.2)   Счетчики элементарных частиц. Коронный разряд лежит в основе действия чрезвычайно важных физических приборов: так называемых счетчиков элементарных частиц (электронов, а также других элементарных частиц, которые образуются при радиоактивных превращениях) счетчик Гейгера – Мюллера. Он состоит из небольшого металлического цилиндра A, снабженного окошком, и тонкой металлической проволоки натянутой оп оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник напряжения В в несколько тысяч вольт. Напряжение выбирают таким, чтобы оно было только немного меньше «критического», т. е. Необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона последний ионизует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток.  Возникающий в счетчике ток настолько слаб, что обычным гальванометром его обнаружить трудно. Однако его можно сделать вполне заметным, если в цепь ввести очень большое сопротивление R и параллельно ему присоединить чувствительный электрометр E. При возникновении в цепи тока I на концах сопротивления создается напряжение U, равное по закону Ома U=IxR. Если выбрать величину сопротивления R очень большой (много миллионов ом), однако значительно меньшей, чем сопротивление самого электрометра, то даже очень слабый ток вызовет заметное напряжение. Поэтому при каждом попадании быстрого электрона внутрь счетчика листочек электрометра будет давать отброс.  Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частички, способные производить ионизацию газа путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные частички.

30school.ru

Различные типы самостоятельного разряда: их техническое применение

 

Существует несколько типов самостоятельного разового разряда:

1. Тлеющий разряд

2. Коронный разряд

3. Искровой разряд

4. Дуговой разряд.

Рассмотрим следующую установку для исследования самостоятельного разряда.

рисунок

Установка представляет собой стеклянную трубку, запаянную с обоих концов. Длина трубки приблизительно полуметра. На концах трубки катод и анод. Также, помимо всего прочего, к трубке присоединен патрубок для откачивания воздуха. 

Электроды трубки присоединяют к источнику постоянного тока с очень высоким напряжением, порядка несколько тысяч вольт.В обычных условиях тока в трубке не будет. Напряжения в несколько тысяч вольт будет недостаточно, чтобы пробить газовый промежуток длиной около полуметра.

Теперь начнем откачивать воздух из трубки, тем самым разряжая его. Давление внутри трубки будет уменьшаться. На уровне 100 мм рт. ст. между катодом и анодом появится разряд в виде светящейся змейки. Чем сильнее мы будем уменьшать давление, тем шире и ярче будет становиться змейка.

Дойдя до отметки в 1-2 мм. рт. ст. будет возникать тлеющий разряд. В тлеющем разряде можно выделить 4 области: а – катодное темное пространство, б – тлеющее сечение, в – фарадеево темное пространство, г – положительный столб разряда.

На следующем рисунке представлен общий вид этих областей в трубке, и график напряжения в зависимости от области.

рисунок

Тлеющий разряд

Видно, что вблизи катода в области в происходит резкое падение катодного потенциала. Это является наиболее характерным признаком для тлеющего разряда.

Тлеющий разряд применяется в различных трубках, изготовленных для рекламы. В зависимости от наполнителя, они будут светиться различными цветами. А наиболее важной областью применения тлеющего разряда являются газовые лазеры.

Коронный разряд

Коронный разряд возникает в газе при атмосферном давлении. При этом газ должен находиться в неоднородном поле. По форме он часто напоминает корону. Появляется близи остриев различных предметов, проводов линий высокого напряжения.

Чем больше будет кривизна проводника, тем выше будет плотность заряда. На острие будет наблюдаться максимальная плотность заряда.При увеличении напряжения коронный заряд может принять вид светящейся кисти, в таких случаях его еще называют кистевым разрядом.

В технике приходится часто учитывать это явление, если идет речь о высоком напряжении. Если будут выступающие части или тонкие провода, то может начаться коронный разряд. Поэтому при проектировке высоковольтных линий следует использовать толстые провода, и чем больше напряжение, тем толще провод.

Искровой разряд

Искровой разряд появляется при атмосферном давлении вследствие пробоя слоя воздуха между электродами, при подаче на них очень высокого напряжения.

При искровом разряде в газе возникают стриммеры. Стриммеры – это каналы ионизированного газа, имеющие вид прерывистых зигзагообразных ярких нитей. При этом наблюдается свечение газа и выделения большого количества теплоты. Газ начинает расширяться, и расширяясь, газ будет излучать звуковые волны.

После пробоя газа, напряжение на электродах резко падает. Ярким примером искрового разряда является молния и сопровождающий её гром. В случае молнии электродами выступают либо облака, либо облако и Земля.

Искровой разряд также как и другие виды самостоятельного газового разряда используется в технике. Например, для зажигания горючего в двигателях внутреннего сгорания или для электроискровой обработки металлов.

Дуговой разряд

Возникает в воздухе при атмосферном давлении и невысоких напряжениях. Имеет форму дуги, за что и получил свое название. Электрическая дуга впервые получена русским ученым В.В. Петровым. 

Основной причиной ионизации газа в этом случае является термоэлектронная эмиссия. Широкое применение наше дуговой разряд в технике. Он используется для сварки метла, а также в электропечах - для плавки металлов.

Нужна помощь в учебе?

Предыдущая тема: Несамостоятельный и самостоятельный разряды: на примере опытов Следующая тема:&nbsp&nbsp&nbspПлазма: общие сведения, свойства, нахождение в природе

Все неприличные комментарии будут удаляться.

www.nado5.ru

Тлеющий разряд. Общее описание тлеющего разряда.

Тлеющий разряд — самостоятельный электрический разряд в газе с холодными электродами при токах -5—1 А, имеющий характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения потенциала вблизи катода, составляющая 100 В и выше, в то время как в дуговом разряде она имеет порядок величины потенциала ионизации газа (около 10 В). В зарубежной литературе эта форма разряда называется glow discharge.

Специфической особенностью тлеющего разряда, по сравнению с таунсендовским разрядом (разряд с холодными электродами и очень малой плотностью тока), является значительная роль электрического поля объемных зарядов. Это приводит к неравномерному распределению потенциала в разрядном промежутке и к существенному отличию напряжения зажигания от напряжения горения разряда.

Место тлеющего разряда среди других типов разряда можно представить с помощью рис. 1.

Рис. 1. Общий вид вольтамперной характеристики газового разряда и основные виды газового разряда

 

При токах 10-5—10-4 А существует переход от темного таунсендовского к нормальному тлеющему разряду, характеризующемуся падающим участком вольтамперной характеристики. В диапазоне токов 10-4 —10-2 А имеет место нормальный тлеющий разряд, вольтамперная характеристика которого представляет прямую, параллельную оси тока.

Таким образом, в нормальном тлеющем разряде напряжение между электродами не зависит от силы тока. В нормальном тлеющем разряде только часть поверхности катода покрыта разрядом. С увеличением силы тока часть поверхности, занимаемая разрядом, возрастает так, что плотность тока остается постоянной. Природа сил, вызывающих расширение поверхности катода, принимающей участие в разряде, остается пока не выясненной. Постоянство напряжения горения нормального тлеющего разряда при изменении в широких пределах разрядного тока используется в газоразрядных стабилизаторах напряжения — приборах, поддерживающих постоянной величину входного напряжения при изменении потребляемого схемой тока.

При токах 10-2—1А возникает аномальный тлеющий разряд с возрастающей вольтамперной характеристикой. При еще больших токах наблюдается переход от тлеющего разряда к дуге с падающей вольтамперной характеристикой. Аномальный тлеющий разряд занимает всю поверхность катода, и поэтому при увеличении силы тока плотность тока также возрастает.

Характерная структура нормального тлеющего разряда показана на рис. 2. К катоду примыкают катодные части разряда, затем следует положительный столб, вблизи анода расположена сравнительно короткая анодная область.

Рис. 2. Структура тлеющего разряда:

1,3,5,7 - темные пространства: 1 - астоново, 3 - катодное, 5 - фарадеево, 7 - анод­ное; 2, 4, 6 - светящиеся зоны: 2 - катодный слой, 4 - отрицательное свечение, 6 - положительный столб, 8 - анодное свечение

 

Основные процессы, обеспечивающие самостоятельный разряд, осуществляются в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих явлений. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной неизотермической низкотемпературной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Тлеющий разряд - это самостоятельный электрический разряд в газе с холодными электродами при токах 10-5-1 А. Он имеет характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения напряжения вблизи катода, составляющая более ста вольт. В зарубежной литературе эта форма разряда называется glow discharge.

Характерная структура нормального тлеющего разряда показана на рис. 2. К катоду примыкают катодные части разряда, затем следует положительный столб, вблизи анода расположена сравнительно короткая анодная область.

Основные процессы, обеспечивающие самостоятельный разряд, происходят в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих процессов. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Прежде чем переходить к описанию явлений, происходящих в различных областях тлеющего разряда, остановимся коротко на общей характеристике процессов, обеспечивающих существование самостоятельного разряда.

Из катода эмитируются электроны вследствие бомбардировки его поверхности ионами, ускоренными сильным полем вблизи катода, и быстрыми атомами, а также вследствие фотоэффекта, возникающего благодаря рекомбинационному излучению компонентов плазмы. Эти электроны, ускоряясь в направлении анода, приобретают энергию, достаточную для ионизации атомов. Новые электроны, возникшие при ионизации газа, снова ускоряются полем, а положительные ионы летят к катоду и, бомбардируя его поверхность, вызывают эмиссию новых электронов.

Если условия ионизации газа в катодных частях и инжекции электронов из катода таковы, что каждый эмитируемый катодом электрон производит столько актов ионизации и возбуждения атомов, что в результате фотоэффекта и бомбардировки катода ионами и атомами возникает новый электрон у катода, то имеет место динамическое равновесие вновь возникающих зарядов и уходящих на катод или в положительный столб. Таким образом происходит самоподдержание процесса, разряд не зависит от посторонних источников ионизации, т. е. является самостоятельным. Роль положительного столба заключается в том, чтобы обеспечить замкнутую цепь тока в разряде. Если анод придвинут к катоду так близко, что остаются только катодные части, то замкнутая цепь тока обеспечена без положительного столба, условия регенерации заряженных частиц выполнены, и тлеющий разряд может существовать. При дальнейшем приближении анода разряд либо прекращается (гаснет), так как условия восстановления зарядов не выполнены, либо требует для своего существования более высокого анодного напряжения, при котором идут более интенсивно процессы, необходимые для самоподдержания разряда (затрудненный разряд).

Как видно из рис. 2, в тлеющем разряде можно выделить несколько характерных областей. Непосредственно к катоду примыкает темное астоново пространство. Электроны, эмитируемые катодом, имеют малые скорости (порядка электрон-вольта), которые недостаточны для возбуждения атомов газа, и поэтому вблизи катода во всех газах имеется область, где свечение газа отсутствует. В сильном электрическом поле электроны ускоряются и, пройдя астоново темное пространство, приобретают энергию, достаточную для возбуждения атомов. Светящаяся область за астоновым темным пространством соответствует энергиям электронов, близким к максимуму функции возбуждения атомов данного газа. Ионизации газа в этой области еще нет, так как вероятность ионизации при этих энергиях еще мала. Эту область называют первым катодным слоем или катодной светящейся пленкой. Излучение имеет линейчатый спектр. За катодной светящейся пленкой следует катодное темное пространство, называемое также гитторфовым или круксовым темным пространством.

Иногда катодным темным пространством называют всю область от катода до границы следующей части - отрицательного тлеющего свечения. На эту область приходится значительная доля напряжения, называемая катодным падением потенциала; напряженность поля здесь значительно выше, чем в других частях разряда. В этой области свечение газа слабее, так как энергия электронов значительно выше энергии максимума функции возбуждения. Этой энергии достаточно, чтобы вызвать ионизацию газа.

Возникающие при ионизации атомов электроны ускоряются полем и движутся в стороны анода к границе отрицательного тлеющего свечения. Положительные ионы так же ускоряются полем и движутся к катоду. Поток ионов, направляющихся к катоду, можно наблюдать по вызываемому ими свечению газа за катодом, если в катоде сделать отверстие. В этом случае ионы пролетают в закатодное пространство, образуя закатодные или каналовые лучи. Если на их пути поставить цилиндр Фарадея и подавать на него положительный потенциал, тормозящий ионы, то получают данные об энергии ионов. Аналогичным образом, изучая поток электронов через отверстие в аноде, придвинутом к катодной границе катодных частей разряда, можно получить сведения о распределении электронов по энергиям.

При низких давлениях и высоких анодных напряжениях (аномальный разряд) поток электронов, движущихся к границе отрицательного свечения, почти моноэнергетический с энергией, равной еоик. Скорость движения ионов значительно меньше скорости движения электронов, благодаря чему в области катодного темного пространства возникает избыточный объемный заряд, образуемый положительными ионами. Этот заряд сильно искажает электрическое поле в этой области. Вопрос о распределении поля в тлеющем разряде, представляющего суперпозицию внешнего поля и поля объемного заряда, является важным вопросом для теории этого типа разряда.

В нормальном тлеющем разряде величина катодного падения потенциала ик зависит от степени чистоты газа и материала катода. Кроме катодного падения потенциала, нормальный тлеющий разряд характеризуется также нормальной плотностью тока i и шириной темного катодного пространства.

За областью катодного темного пространства следует отрицательное тлеющее свечение. Эта часть разряда имеет резкую границу со стороны катода и размытую со стороны анода. В ней электрическое поле мало. Ионизованный газ представляет собою почти квазинейтральную плазму, которая пронизывается потоком быстрых электронов из катодного темного пространства. На роль быстрых электронов в этой области указывает прямая связь между энергией электронов и длиной отрицательного тлеющего свечения. Кроме быстрых электронов, в отрицательном тлеющем свечении имеется значительное число медленных электронов, испытавших в катодном темном пространстве неупругие столкновения и потерявших при этом большую часть своей энергии. Эти электроны обладают энергиями, близкими к максимуму функции возбуждения, и вызывают свечение газа с линейчатым спектром, определяемым природой атомов. Кроме того, излучение отрицательного свечения может быть вызвано рекомбинацией зарядов, вероятность которой велика у медленных электронов.

В сторону анода напряженность поля несколько возрастает, и интенсивность свечения этой области разряда постепенно падает вследствие уменьшения вероятности рекомбинации. Роль ионов, возникающих в отрицательном свечении и диффундирующих в катодное темное пространство, по-видимому, невелика для поддержания нормального разряда. Их значение возрастает в аномальных разрядах с большой плотностью тока.

Следующее за отрицательным тлеющим свечением фарадеево темное пространство является переходной областью от катодных частей к положительному столбу. Здесь электроны приобретают энергию в слабом электрическом поле, но эта энергия проявляется в их хаотическом движении. В начале положительного столба она возрастает настолько, что имеет место заметное возбуждение и ионизация атомов газа электронами. Существенное отличие фарадеева темного пространства от катодного темного пространства состоит в том, что в первом энергия электронов слишком мала для возникновения свечения газа, а в последнем слишком велика.

Положительный столб тлеющего разряда представляет собой плазму с малой (относительно катодного темного пространства) напряженностью поля. При стационарном токе величина напряженности поля устанавливается такой, чтобы компенсировать потери заряженных частиц. Эти потери обусловлены либо диффузией электронов и ионов на стенки трубки (если длина положительного столба значительно больше его диаметра) или на анод и в катодные области (в случае короткого положительного столба), либо рекомбинацией носителей зарядов в объеме. При очень низких давлениях газа, когда длина свободного пробега ионов больше радиуса трубки, частицы движутся к стенкам в режиме «свободного падения» и рекомбинируют на поверхности трубки. Таким образом, положительный столб можно рассматривать как самостоятельную область разряда, существующую в известной степени независимо от катодных частей.

Положительный столб бывает не только в тлеющем разряде, но и в дуге низкого давления с накаленным катодом. Плазма высокочастотного разряда также во многом напоминает положительный столб. Свойства положительного столба в различных видах разряда низкого давления в значительной степени идентичны. Во многих случаях (по мнению некоторых исследователей) положительный столб имеет слоистую структуру в виде неподвижных или движущихся вдоль оси трубки слоев, называемых стратами.

Вблизи анода имеется узкое темное пространство и анодное свечение. Появление этих частей связано с граничными условиями на аноде. Электроны притягиваются анодом, положительные ионы отталкиваются. Перед анодом образуется отрицательный объемный заряд, вызывающий изменение потенциала порядка потенциала ионизации газа. Если приблизить анод к катоду настолько, что он попадает в фарадеево темное пространство, то анодное падение потенциала исчезает.

Цвет различных частей разряда зависит от газа, в котором он происходит. Чаще всего разряд происходит с металлическими электродами. Но он может существовать также с покрытыми стеклом металлическими электродами или с неметаллическими электродами. Электропроводность неметаллических электродов или стекла связана с их нагреванием в разряде. Физические процессы на поверхности таких электродов недостаточно изучены.

www.eti.su

Тлеющий разряд - хорошо светит

Электрический ток протекает не только в металлах, но в жидкостях и газах. Правда, механизм протекания электрического тока в этих случаях другой. В газах все начинается с электрического разряда. Он по своей природе может быть нескольких видов, один из них – так называемый тлеющий разряд.

Чтобы понять, что это такое, можно ознакомиться с описанием эксперимента, проводимого учёными для демонстрации подобного явления. Для его проведения используют стеклянную трубку определенной длины, у которой на концах имеются два электрода. К ним подключают источник постоянного тока. Здесь возможны два варианта дальнейшего проведения эксперимента – либо начинают постепенно повышать напряжение до величины несколько тысяч вольт, либо начинают откачивать воздух из трубки до понижения давления внутри до нескольких мм. рт. столба.

При понижении давления до некоторой величины в трубке вспыхивает светящийся шнур от электрода до электрода. Это возник тлеющий разряд. Его появлению способствует пониженное давление, а поддерживается он вторичной эмиссией электронов из катода. Дело в том, что при обычных условиях газ электрический ток не проводит, но при специальных условиях, например, таких, как описано, между электродами протекает электрический ток. В этом случае положительные ионы бомбардируют катод и выбивают оттуда электроны.

Протекание тока обусловлено образованием таких свободных носителей заряда, а вот механизм их появления разный. Сейчас известны следующие виды разрядов в газах – искровой, коронный, дуговой и тлеющий. Причины, благодаря которым начинает протекать ток, тоже разные. Когда мы из стеклянной трубки откачиваем воздух, то, в конце концов, получим тлеющий разряд, а когда будем повышать напряжение на выводах электродов – искровой.

Чтобы не возвращаться больше к классификации, отметим, что бывают самостоятельные и несамостоятельные разряды. Виды самостоятельных разрядов уже перечислены, а несамостоятельные возникают при каких-либо дополнительных внешних воздействиях.

Все виды разрядов интересны и обладают крайне любопытными свойствами, но пока остановимся на одном из них. Посмотрим, что собой представляет тлеющий разряд. Если изучить его внешнее проявление, то можно установить две области – несветящуюся и светящуюся. Несветящаяся называется темным катодным пространством, а светящаяся – положительным столбом, и она занимает практически весь объем трубки.

Цвет свечения зависит от газа, в среде которого происходит разряд. Такие светящиеся трубки используются в качестве ламп, так называемые люминесцентные лампы. Да и огни рекламы тоже выполняются с использованием подобных трубок. И процесс украшения и светового оформления практически невозможен без подобных изделий.

Однако это далеко не все возможные области применения тлеющего разряда. Есть такие отрасли, как лазерная техника и плазмохимия. Кроме того, благодаря применению тлеющего разряда проводится упрочнение поверхности инструмента для повышения его износостойкости, твердости, сопротивления кавитации.

Из других возможных вариантов применения описываемого эффекта можно отметить его использование в специальных приборах, основанных на эффекте тлеющего разряда. Их можно применять для регулирования тока и напряжения, в устройствах защиты и усиления приборов, генераторах колебаний. Однако электрический разряд может быть и нежелательным явлением. Так, коронный электрический разряд с ЛЭП вызывает потери электроэнергии, но это не относится к тлеющему разряду, который сейчас нас интересует.

Рассмотрение электрического тока в газах позволило установить механизм его возникновения, в том числе и понять, что собой представляет тлеющий разряд. Описаны варианты его использования в промышленности и технике.

fb.ru

Тлеющий разряд Википедия

У этого термина существуют и другие значения, см. Разряд. Тлеющий разряд в неоне

Тле́ющий разря́д — один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока переходит в дуговой разряд.

В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы.

Получение

Присоединим электроды к источнику постоянного тока с напряжением несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остаётся тёмным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе — малинового цвета, в других газах — других цветов), соединяющего оба электрода. В этом состоянии газовый столб хорошо проводит электричество. При дальнейшей откачке светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубку. При давлении газа в несколько десятых миллиметра ртутного столба разряд заполняет почти весь объем трубки.

Структура

Различают следующие две главные части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название тёмного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба. При подходящем давлении положительный столб может распадаться на отдельные слои, разделённые тёмными промежутками, так называемые страты.

Страты тлеющего разряда

Механизм

Описанная форма разряда называется тлеющим разрядом. Почти весь свет исходит от его положительного столба. При этом цвет свечения зависит от рода газа. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе всё время поддерживается сильная ионизация. Причинами ионизации газа в тлеющем разряде являются электронная эмиссия с катода под действием высоких температур или сильного электрического поля, последующая ионизация молекул газа электронным ударом свободными электронами, вырванными с катода и летящими по направлению к аноду, а также вторичная электронная эмиссия электронов с катода, вызванная бомбардировкой катода положительно заряженными ионами газа.

Применение

В настоящее время трубки с тлеющим разрядом находят практическое применение как источник света — газоразрядные лампы. Для целей освещения часто применяются люминесцентные лампы, в которых разряд происходит в парах ртути, причём вредное для зрения ультрафиолетовое излучение поглощается слоем флюоресцирующего вещества — люминофора, покрывающего изнутри стенки лампы. Люминофор начинает светиться видимым светом, давая в результате свет, близкий по характеристикам к дневному свету (люминесцентные лампы дневного света). Такие лампы дают близкое к «естественному» освещение (но не полный спектр, как у ламп накаливания). Спектр испускаемого люминесцентными лампами света дискретный — красная, зелёная и синяя составляющая в определённой пропорции, плюс незначительные спектральные пики других цветов от примесей люминофора. Энергия освещения распределяется по этим узким полосам спектра, поэтому эти лампы значительно (в 3-4 раза) экономичнее ламп накаливания (у последних до 95 % энергии занимает инфракрасная область спектра, невидимая человеческим глазом).

Люминесцентные лампы в быту приходят на смену лампам накаливания, а на производстве и в служебных помещениях почти полностью их вытеснили. Однако люминесцентные лампы не лишены недостатков. Так, например, на производстве использование люминесцентных ламп сопряжено с вредным стробоскопическим эффектом, заключающемся в том, что мерцание люминесцентной лампы с частотой питающего напряжения может совпасть по частоте вращения обрабатывающего механизма, при этом сам механизм в свете такой лампы для человека будет казаться неподвижным, «выключенным», что может привести к травме. Поэтому применяют дополнительную подсветку операционной зоны простой лампой накаливания, лишённой такого недостатка в силу инерции световой отдачи нити накаливания. На производстве, при наличии трёхфазной электрической сети, эта проблема решается включением ламп в разные фазы (напр. каждая 1-я лампа питается от фазы А, каждая 2-я от фазы B и т.д), что компенсирует мерцание ламп. У ламп, использующих вместо традиционной схемы включения (стартер + дроссель) ВЧ-генератор (такая схема использована в т. н. «экономичных» лампах, предназначенных для замены ламп накаливания), проблема стробоскопического эффекта отсутствует.

Газоразрядные лампы применяются также для декоративных целей. В этих случаях им придают очертания букв, различных фигур и т. д. и наполняют газом с красивым цветом свечения (неоном, дающим оранжево-красное свечение, или аргоном с синевато-зелёным свечением).

Важнейшее применение тлеющий разряд получил в сравнительно недавно созданных квантовых источниках света — газовых лазерах.

См. также

Литература

  • Райзер Ю. П. Физика газового разряда. — 2-е изд. — М.: Наука, 1992. — 536 с. — ISBN 5-02014615-3.

wikiredia.ru

Типы разрядов

      В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  •      тлеющий разряд;
  •      искровой разряд;
  •      дуговой разряд;
  •      коронный разряд.
  •       1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

          Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    Рис. 8.5

          При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

          Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала.

          В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

          Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

          Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

          Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

          Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

          2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами.

    Тгаза = 10 000 К

     ~ 40 см

    I = 100 кА

    t = 10–4 c

    l ~ 10 км

    Рис. 8.6

          После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

          В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 104 – 105 А, длиной 20 км (рис. 8.7).

             

    Рис. 8.7

          3. Дуговой разряд. Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

     
    ~ 103 А  
    Рис. 8.8

          При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

          4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

     

    Рис. 8.9

          Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙106 В/м, вокруг него  возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

    ens.tpu.ru