ул.Симферопольская
дом 5, офис 9
Корзина
Корзина пуста
Как правильно рассчитать нагрузку на кабель. Нагрузка на провод
Как правильно рассчитать нагрузку на кабель | Полезные статьи
Для того чтобы правильно проложить электропроводку, обеспечить бесперебойную работу всей электросистемы и исключить риск возникновения пожара, необходимо перед закупкой кабеля осуществить расчет нагрузок на кабель для определения необходимого сечения.
Существует несколько видов нагрузок, и для максимально качественного монтажа электросистемы необходимо производить расчет нагрузок на кабель по всем показателям. Сечение кабеля определяется по нагрузке, мощности, току и напряжению.
Расчет сечения по мощности
Для того чтобы произвести расчет сечения кабеля по мощности, необходимо сложить все показатели электрооборудования, работающего в квартире. Расчет электрических нагрузок на кабель осуществляется только после этой операции.
Расчет сечения кабеля по напряжению
Расчет электрических нагрузок на провод обязательно включает в себя расчет сечения кабеля по напряжению. Существует несколько видов электрической сети — однофазная на 220 вольт, а также трехфазная — на 380 вольт. В квартирах и жилых помещениях, как правило, используется однофазная сеть, поэтому в процессе расчета необходимо учитывать данный момент — в таблицах для расчета сечения обязательно указывается напряжение.
Расчет сечения кабеля по нагрузке
Таблица 1. Установленная мощность (кВт) для кабелей, прокладываемых открыто
0,5 | 2,4 | |||
0,75 | 3,3 | |||
1 | 3,7 | 6,4 | ||
1,5 | 5 | 8,7 | ||
2 | 5,7 | 9,8 | 4,6 | 7,9 |
2,5 | 6,6 | 11 | 5,2 | 9,1 |
4 | 9 | 15 | 7 | 12 |
5 | 11 | 19 | 8,5 | 14 |
10 | 17 | 30 | 13 | 22 |
16 | 22 | 38 | 16 | 28 |
25 | 30 | 53 | 23 | 39 |
35 | 37 | 64 | 28 | 49 |
Таблица 2. Установленная мощность (кВт) для кабелей, прокладываемых в штробе или трубе
0,5 | ||||
0,75 | ||||
1 | 3 | 5,3 | ||
1,5 | 3,3 | 5,7 | ||
2 | 4,1 | 7,2 | 3 | 5,3 |
2,5 | 4,6 | 7,9 | 3,5 | 6 |
4 | 5,9 | 10 | 4,6 | 7,9 |
5 | 7,4 | 12 | 5,7 | 9,8 |
10 | 11 | 19 | 8,3 | 14 |
16 | 17 | 30 | 12 | 20 |
25 | 22 | 38 | 24 | |
35 | 29 | 51 | 16 |
Каждый электроприбор, установленный в доме, имеет определенную мощность — данный показатель указывается на шильдиках приборов или в техническом паспорте оборудования. Чтобы осуществить расчет нагрузок на провод, необходимо подсчитать общую мощность. Производя расчет сечения кабеля по нагрузке, необходимо переписать все электрооборудование, а также нужно продумать, какое оборудование может добавиться в будущем. Поскольку монтаж производится на долгий срок, необходимо позаботиться о данном вопросе, чтобы резкое увеличение нагрузки не привело к аварийной ситуации.
Например, у вас получилась сумма общего напряжения 15 000 Вт. Поскольку в подавляющем большинстве жилых помещений напряжение составляет 220 В, мы рассчитаем систему электроснабжения с учетом однофазной нагрузки.
Далее необходимо продумать, какое количество оборудования может работать одновременно. В итоге у вас получится значительная цифра: 15 000 (Вт) х 0,7 (коэффициент одновременности 70 %) = 10 500 Вт (или 10,5 кВт) — на эту нагрузку должен быть рассчитан кабель.
Также вам необходимо определить, из какого материала будут выполнены жилы кабеля, поскольку разные металлы имеют разные проводящие свойства. В жилых помещениях в основном используют медный кабель, поскольку его проводящие свойства намного превышают показатели алюминия.
Стоит учитывать, что кабель обязательно должен иметь три жилы, поскольку в помещениях для системы электроснабжения требуется заземление. Кроме того, необходимо определить, какой вид монтажа вы будете использовать — открытый или скрытый (под штукатуркой или в трубах), поскольку от этого также зависит расчет сечения кабеля. После того как вы определились с нагрузкой, материалом жилы и видом монтажа, вы можете посмотреть нужное сечение кабеля в таблице.
Расчет сечения кабеля по току
Сначала необходимо осуществить расчет электрических нагрузок на кабель и выяснить мощность. Допустим, что мощность получилась 4,75 кВт, мы решили использовать медный кабель (провод) и прокладывать его в кабель-канале. Расчет сечения кабеля по току производится по формуле I = W/U, где W — мощность, а U — напряжение, которое составляет 220 В. В соответствии с данной формулой, 4750/220 = 21,6 А. Далее смотрим по таблице 3, у нас получается 2,5 мм.
Таблица 3. Допустимые токовые нагрузки для кабеля с медными жилами прокладываемого скрыто
1,5 | 19 | 16 |
2,5 | 27 | 25 |
4 | 38 | 30 |
6 | 46 | 40 |
10 | 70 | 50 |
16 | 85 | 75 |
25 | 115 | 90 |
35 | 135 | 115 |
50 | 175 | 145 |
70 | 215 | 180 |
95 | 260 | 220 |
120 | 300 | 260 |
cable.ru
Как правильно рассчитать нагрузку на кабель? Выбор материала кабеля и виды сечения.
Для чего необходимо проводить расчет нагрузки на кабель?
Один из основных параметров, определяющих стоимость кабеля – его сечение. Чем оно больше, тем выше его цена. Но если купить недорогой провод, сечение которого не соответствует нагрузкам в контуре, повышается плотность тока. Из-за этого увеличивается сопротивление и выделение тепловой энергии при прохождении электричества. Потери же электроэнергии возрастают, а эффективность системы снижается. На протяжении всего срока эксплуатации потребитель оплачивает значительные потери электроэнергии.
Но это не единственный минус установки кабеля с неправильно выбранным сечением. Из-за повышенного выделения тепла чрезмерно нагревается изоляция проводов – это сокращает срок использования проводов и нередко становится причиной короткого замыкания.
Расчет нагрузки на кабель позволяет:
- Уменьшить счета за электроэнергию;
- Увеличить срок службы проводки;
- Снизить риск возникновения короткого замыкания.
Какие потери возникают при прохождении электрического тока?
При выполнении расчета нагрузки на кабель нужно учитывать:
1. Потери электрического тока при прохождении по проводамПеремещение электричества от генератора тока к приемникам (бытовой технике, электрооборудованию, осветительным приборам) сопровождается высвобождением тепловой энергии. Этот физический процесс не приносит пользы. Выделяющееся тепло нагревает изоляционные оболочки, что приводит к сокращению срока их службы. Они становятся более хрупкими и быстро разрушаются. Нарушение целостности изоляции может стать причиной короткого замыкания при соприкосновении проводов друг с другом, а при контакте с человеком – опасной травмы.
Превращение электрической энергии в тепловую происходит из-за сопротивления, которое увеличивается по мере роста плотности проходящего тока. Эта величина рассчитывается по формуле:
Ј = I/S а/мм2
где
- I – сила тока;
- S – поперечное сечение провода.
При монтаже внутренней электропроводки плотность тока должна быть не выше 6 А/мм2. Для других работ расчет сечения кабеля по току производится на основании таблиц, содержащихся в Правилах устройства и технической эксплуатации электроустановок (ПУЭ и ПТЭЭП).
Если рассчитанное значение плотности больше рекомендованного необходимо купить кабель с большим сечением провода. Несмотря на увеличение стоимости проводки, такое решение оправдано с экономической точки зрения. Выбор кабеля для проводки с оптимальным размером сечения в несколько раз увеличит ее срок безопасной эксплуатации и сократит потери электричества при прохождении по проводам.
Сопротивление материалов, возникающее в процессе передачи электрического тока, приводит не только к выделению тепловой энергии и нагреву проводов. Также происходят потеря напряжения, что негативно сказывается на работе электрооборудования, бытовой техники и осветительных приборов.
При монтаже электропроводки необходимо рассчитать и величину сопротивления линии (Rл). Она рассчитывается по формуле:
Rл = ρ(l/S)
где
- ρ – удельное сопротивление материала, из которого изготовлен провод;
- l – длина линии;
- S – поперечное сечение провода.
Падение напряжения определяется как ΔUл = IRл, и его величина должна составлять не более 5% от исходного, а для осветительных нагрузок – не более 3%. Если же она больше, необходимо выбрать кабель с большим сечением или изготовленный из другого материала, с меньшим удельным сопротивлением. В большинстве случаев и с технической, и с экономической точки зрения целесообразно увеличить площадь сечения кабеля.
Выбор материала кабеля
Наш каталог кабельной продукции в Бресте включает большой выбор кабелей, изготовленных из различных материалов:
Медь имеет очень низкое удельное сопротивление (ниже только у золота), поэтому проводимость медных проводов значительно выше, чем у алюминиевых. Она не окисляется, что существенно увеличивает срок эффективной эксплуатации. Металл очень гибкий, кабель можно многократно складывать и сворачивать. Благодаря высокой пластичности возможно изготовление более тонких жил (изготавливаются медные жилы й от 0,3 мм2, минимальный размер алюминиевой жилы – 2,5 мм2).
Более низкое удельное сопротивление позволяет уменьшить выделение тепловой энергии при прохождении тока, поэтому при прокладке внутренней проводки в жилых помещениях разрешается использовать только медные провода.
Удельное сопротивление алюминия выше, чем у золота, меди и серебра, но ниже, чем у других металлов и сплавов.
Главное преимущество алюминиевого кабеля перед медным – его цена в несколько раз ниже. Также он значительно легче, что облегчает монтаж электросетей. При монтаже электросетей большой протяженностью эти характеристики имеют решающее значение.
Алюминий не подвержен коррозии, но при контакте с воздухом на его поверхности образовывается пленка. Она защищает металл от воздействия атмосферной влаги, но практически не проводит ток. Эта особенность осложняет соединение кабелей.
Основные виды расчета сечения
Расчет нагрузок на провод должен быть выполнен по всем значимым характеристикам:
По мощности
Определяется суммарная мощность всех приборов, потребляющих электроэнергию в доме, квартире, в производственном цеху. Потребляемая мощность бытовой техники и электрооборудования указывается производителем.
Также необходимо учесть электроэнергию, потребляемую осветительными приборами. Все электроприборы в домашних условиях редко работают одновременно, но расчет сечения кабеля по мощности выполняется с запасом, что позволяет сделать электропроводку более надежной и безопасной. Для промышленных объектов выполняется более сложный расчет с использованием коэффициентов спроса и одновременности.
По напряжению
Расчет сечения кабеля по напряжению производится исходя из вида электрической сети. Она может быть однофазной (в квартирах многоэтажных домов и большинстве индивидуальных коттеджей) и трехфазной (на предприятиях). Напряжение в однофазной сети составляет 220 В, в трехфазной – 380 В.
Если суммарная мощность электроприборов в квартире равна 15 кВт, то для однофазной проводки этот показатель и будет равен 15кВт, а для трехфазной он будет в 3 раза меньше – 5 кВт. Но при монтаже трехфазной проводки используется кабель с меньшим сечением, но содержащий не 3, а 5 жил.
По нагрузке
Расчет сечения кабеля по нагрузке также требует подсчета суммарной мощности электрооборудования. Желательно увеличить эту величину на 20-30%. Проводка выполняется на длительный срок, а количество бытовой техники в квартире или оборудования в цеху может увеличиться.
Затем следует определить, какое оборудование может быть включено одновременно. Этот показатель может существенно отличаться в разных домах. У одних большое количество бытовой техники или электрооборудования, которым пользуются несколько раз в месяц или в год. У других в доме – только необходимые, но часто используемые электроприборы.
В зависимости от величины коэффициента одновременности мощность может как незначительно, так и в несколько раз отличаться от нагрузки.
Напряжение 220 В | Напряжение 380 В | Напряжение 220 В | Напряжение 380 В | |
0,5 | 2,4 | - | - | - |
0,75 | 3,3 | - | - | - |
1 | 3,7 | 6,4 | - | - |
1,5 | 5 | 8,7 | - | - |
2 | 5,7 | 9,8 | 4,6 | 7,9 |
2,5 | 6,6 | 11 | 5,2 | 9,1 |
4 | 9 | 15 | 7 | 12 |
5 | 11 | 19 | 8,5 | 14 |
10 | 17 | 30 | 13 | 22 |
16 | 22 | 38 | 16 | 28 |
25 | 30 | 53 | 23 | 39 |
35 | 37 | 64 | 28 | 49 |
Напряжение 220 В | Напряжение 380 В | Напряжение 220 В | Напряжение 380 В | |
1 | 3 | 5,3 | - | - |
1,5 | 3,3 | 5,7 | - | - |
2 | 4,1 | 7,2 | 3 | 5,3 |
2,5 | 4,6 | 7,9 | 3,5 | 6 |
4 | 5,9 | 10 | 4,6 | 7,9 |
5 | 7,4 | 12 | 5,7 | 9,8 |
10 | 11 | 19 | 8,3 | 14 |
16 | 17 | 30 | 12 | 20 |
25 | 22 | 38 | 14 | 24 |
35 | 29 | 51 | 16 | - |
По току
Для расчета номинального тока используется величина суммарной мощности нагрузки. Зная ее, максимально разрешенную нагрузку по току рассчитывают по формуле:
I = P/U*cosφ
где
- I – номинальн. ток;
- P – суммарн. мощность;
- U – напряжение;
- cosφ – коэфф-т мощности.
На основании полученной величины находим оптимальный размер сечение кабеля в таблицах.
Напряжение 220 В | Напряжение 380 В | |
1,5 | 19 | 16 |
2,5 | 27 | 25 |
4 | 38 | 30 |
6 | 46 | 40 |
10 | 70 | 50 |
16 | 85 | 75 |
25 | 115 | 90 |
35 | 135 | 115 |
50 | 175 | 145 |
70 | 215 | 180 |
95 | 260 | 220 |
120 | 300 | 260 |
Важные нюансы для правильного расчета нагрузки на кабель
При работе с таблицей, следует обращать внимание, для какого вида электропроводки она составлена (однофазной или трехфазной), для открытой или скрытой проводки, для медного или алюминиевого кабеля.
При выборе и заказе провода важно различать такие характеристики как сечение и диаметр. Если диаметр провода 8 мм2, его сечение равно S = (π/4) х D² = 50 мм2.
Для расчета сечения многожильного провода, применяется формула:
S = N *(D²/1.27)
где
- N – количество жил.
Чтобы заказать кабельную продукцию или задать вопросы относительно ее характеристик и особенностей выбора, звоните по телефонам: +375 (162) 44-66-60.
viva-el.by
Длительно допустимый ток кабеля: нагрузки, технология
Когда на кабельные линии подается напряжение, для них устанавливаются заданные нагрузки по току. Требование правил технической эксплуатации связано с нагревом изоляции при продолжительных нагрузках. Если длительно допустимый ток кабеля превышает предельное значение, произойдет его перегрев и разрушение изоляционного слоя с последующим повреждением. Поэтому нагрузки подбирают так, чтобы исключить опасность термического разрушения изолирующего слоя.
Причина нагрева кабеля
Количество выделяющегося при эксплуатации кабеля тепла находится по формуле:
- Q = I2Rn Вт/см, где I - нагрузочный ток, А; n - количество жил; R - сопротивление, Ом.
Из приведенного выражения следует, чем выше потребляемый ток на электроустановке, к которой подведен кабель, тем больше последний разогревается. Причем мощность, выделяемая в жилах в виде тепла, находится в квадратичной зависимости от нагрузки.
Рассеивание тепла от работающего кабеля
Разогрев кабеля не будет постоянно расти в связи с тем, что тепло должно куда-то уходить. Причем его количество зависит от разности между температурой кабеля и окружающей среды. В конце концов наступит равновесие, и температура проводников станет постоянной.
Как рассчитать допустимую силу тока по температуре нагрева жил
Когда тепловыделение от нагрузки становится равным количеству рассеиваемого кабелем тепла, режим работы становится стабильным:
- P = θ/∑S = (tж - tср)/(∑S), где θ - разница между температурой жилы и среды, 0С; tж - tср - температурный перепад, 0С; ∑S - термосопротивление кабеля.
Тепло будет уходить из кабеля тем больше, чем лучше проводимость среды. Длительно допустимый ток кабеля рассчитывается так: Iдоп = √((tдоп - tср)/( Rn∑S)), где tдоп является допустимой температурой нагрева жил (зависит от типа кабеля).
Условия теплоотдачи
Лучше всего теплоотдача происходит, когда кабель находится в воде. Если он проложен в грунте, отвод тепла зависит от состава последнего и содержания в нем влаги. В расчетах обычно принимают удельное сопротивление грунта r = 120 Ом∙град/Вт, что соответствует песчано-глинистой почве с влажностью 12-14 %. Для получения точных показаний важно знать состав почвы, поскольку сопротивление изменяется в широких пределах и находится по таблицам. Его можно уменьшить изменением состава засыпки траншеи с кабелем и путем тщательной трамбовки. Пористые песок и гравий имеют теплопроводность ниже, чем глины. Поэтому засыпку кабеля производят глиной или суглинком, не содержащими шлак, строительный мусор и камни.
Кабель, проведенный по воздуху, имеет плохую теплоотдачу. Еще хуже она становится при прокладке в кабель-каналах, где появляются дополнительные воздушные прослойки, взаимный подогрев рядом расположенных кабелей и сопротивление стенок. Для таких случаев выбирают нагрузки по току как можно меньше.
Для обеспечения благоприятных температурных условий работы кабельной линии следует найти допустимые нагрузки по току для двух режимов: аварийного и длительного. В характеристиках кабелей также приводится величина допустимой температуры при коротком замыкании, которая для бумажной изоляции составляет 2000 С, а для ПВХ - 1200 С.
Длительно допустимый ток кабеля находится в обратно пропорциональной зависимости от его температурного сопротивления и теплоемкости внешней среды.
Необходимо принимать во внимание, что с течением времени проводимость изоляции кабеля увеличивается по причине высыхания. Сопротивление грунта составляет 70 % от суммарной величины и является определяющей в расчетах суммарной нагрузки.
Таблицы для определения допустимого тока
Есл рассчитывать вручную, то довольно сложно определить длительно допустимый ток кабеля. ПУЭ содержат специальные таблицы, где приводятся его значения для разных условий эксплуатации. Ниже приведены расчетные данные предельно допускаемых нагрузок для разных сечений медного проводника при его температуре 900 С и окружающего воздуха 450 С.
С помощью кабелей, характеристики которых приведены в таблице, передают и распределяют электроэнергию в сетях постоянного и переменного напряжения и в стационарных установках. Они не выдерживают больших растягивающих усилий и прокладываются в грунте, на открытом воздухе, в кабель-каналах. Длительно допустимая температура жилы равна 700 С, а при коротком замыкании - не более 1600 С за 4 сек. В аварийном режиме допустимый нагрев жил не превышает 800 С.
Марка | Конструкция |
ВВГ | Жилы - проводник из меди сечением до 50 мм2. Изоляция - ПВХ. Наружная оболочка - ПВХ. |
АВВГ | Жилы - проводник из алюминия сечением до 50 мм2. Изоляция - ПВХ. Наружная оболочка - ПВХ. |
АВБбШв | Жилы - проводник из алюминия сечением до 120 мм2. Изоляция - ПВХ. Броня - стальные битумированные ленты. |
Характеристики проводников варьируются в широких пределах, в зависимости от маркировки, количества жил и других параметров. Длительно допустимый ток кабеля ВВГ зависит от сечения, которое определяется количеством и типом жил. Например, максимальная площадь сечения одножильного кабеля составляет 240 мм2, а в пятижильном - 50 мм2.
Длительно допустимый ток кабеля АВВГ также определяется сечением, которое будет несколько больше, чем у провода ВВГ, поскольку он выполнен из алюминия. Допустимая температура эксплуатации и аварийного режима работы у обоих типов одинакова.
Кабель АВБбШв имеет особенность - он может применяться во взрывоопасных и пожапроопасных помещениях за счет наличия двойной брони из стальной ленты. Он широко распространен в строительстве. Длительно допустимый ток кабеля АВБбШв, так же, как у предыдущих изделий, зависит от температуры, которая не должна превышать 750 С, что несколько выше. Он определяется по таблицам и зависит от сечения жил и способа прокладки.
Заключение
Чтобы проводники припостоянной нагрузке не перегревались, необходимо подобрать длительно допустимый ток кабеля по таблицам и рассчитать отвод тепла в окружающую среду. Неправильный выбор кабеля приведет к его перегреву и разрушению изолирующего слоя, что повлечет за собой преждевременный выход изделия из строя.
fb.ru
Токовые нагрузки на кабели и провода | Полезные статьи
Токовые нагрузки, установленные в действующихнормативных документах по использованию кабелей и проводов вэлектрических сетях, указаны в таблицах 1 - 11. Указанные значениятоков приведены для температур окружающего воздуха +25°С и земли +15°С для усредненных условий прокладки. В случае необходимости выбораконкретной токовой нагрузки для конкретного типа кабеля или провода иконкретных условий прокладки, необходимо руководствоваться методиками,указанными в стандартах и правилах.
Таблица 1. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с медными жилами, А
0,5 | 11 | - | - | - | - | - |
0,75 | 15 | - | - | - | - | - |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
Таблица 2. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами, А
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
Таблица 3. Длительно допустимый ток для гибких кабелей и проводов с резиновой изоляцией, А
0,5 | - | 12 | - |
0,75 | - | 16 | 14 |
1,0 | - | 18 | 16 |
1,5 | - | 23 | 20 |
2,5 | 40 | 33 | 28 |
4 | 50 | 43 | 36 |
6 | 65 | 55 | 45 |
10 | 90 | 75 | 60 |
16 | 120 | 95 | 80 |
25 | 160 | 125 | 105 |
35 | 190 | 150 | 130 |
50 | 235 | 185 | 160 |
70 | 290 | 235 | 200 |
Таблица 4. Допустимый длительный токдля проводов с медными жилами с резиновой изоляцией дляэлектрифицированного транспорта 1, 3 и 4 кВ, А
1 | 20 | 16 | 115 | 120 | 390 |
1,5 | 25 | 25 | 150 | 150 | 445 |
2,5 | 40 | 35 | 185 | 185 | 505 |
4 | 50 | 50 | 230 | 240 | 590 |
6 | 65 | 70 | 285 | 300 | 670 |
10 | 90 | 95 | 340 | 350 | 745 |
Таблица 5. Допустимый длительный токдля кабелей с медными жилами с бумажной пропитанной изоляцией на низкоенапряжение в свинцовой оболочке, прокладываемых в земле, А
6 | - | 80 | 70 | - | - | - |
10 | 140 | 105 | 95 | 80 | - | 85 |
16 | 175 | 140 | 120 | 105 | 95 | 115 |
25 | 235 | 185 | 160 | 135 | 120 | 150 |
35 | 285 | 225 | 190 | 160 | 150 | 175 |
50 | 360 | 270 | 235 | 200 | 180 | 215 |
70 | 440 | 325 | 285 | 245 | 215 | 265 |
95 | 520 | 380 | 340 | 295 | 265 | 310 |
120 | 595 | 435 | 390 | 340 | 310 | 350 |
150 | 675 | 500 | 435 | 390 | 355 | 395 |
185 | 755 | - | 490 | 440 | 400 | 450 |
240 | 880 | - | 570 | 510 | 460 | - |
300 | 1000 | - | - | - | - | - |
400 | 1220 | - | - | - | - | - |
500 | 1400 | - | - | - | - | - |
625 | 1520 | - | - | - | - | - |
800 | 1700 | - | - | - | - | - |
Таблица 6. Допустимый длительный токдля кабелей с медными жилами с бумажной пропитанной изоляцией на низкоенапряжение в свинцовой оболочке, прокладываемой в воздухе, А
6 | - | 55 | 45 | - | - | - |
10 | 95 | 75 | 60 | 55 | - | 60 |
16 | 120 | 95 | 80 | 65 | 60 | 80 |
25 | 160 | 130 | 105 | 90 | 85 | 100 |
35 | 200 | 150 | 125 | 110 | 105 | 120 |
50 | 245 | 185 | 155 | 145 | 135 | 145 |
70 | 305 | 225 | 200 | 175 | 165 | 185 |
95 | 360 | 275 | 245 | 215 | 200 | 215 |
120 | 415 | 320 | 285 | 250 | 240 | 260 |
150 | 470 | 375 | 330 | 290 | 270 | 300 |
185 | 525 | - | 375 | 325 | 305 | 340 |
240 | 610 | - | 430 | 375 | 350 | - |
300 | 720 | - | - | - | - | - |
400 | 880 | - | - | - | - | - |
500 | 1020 | - | - | - | - | - |
625 | 1180 | - | - | - | - | - |
800 | 1400 | - | - | - | - | - |
Таблица 7. Допустимый длительный токдля кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией нанизкое напряжение в свинцовой оболочке, прокладываемых в земле, А
6 | - | 60 | 55 | - | - | - |
10 | 110 | 80 | 75 | 60 | - | 65 |
16 | 135 | 110 | 90 | 80 | 75 | 90 |
25 | 180 | 140 | 125 | 105 | 90 | 115 |
35 | 220 | 175 | 145 | 125 | 115 | 135 |
50 | 275 | 210 | 180 | 155 | 140 | 165 |
70 | 340 | 250 | 220 | 190 | 165 | 200 |
95 | 400 | 290 | 260 | 225 | 205 | 240 |
120 | 460 | 335 | 300 | 260 | 240 | 270 |
150 | 520 | 385 | 335 | 300 | 275 | 305 |
185 | 580 | - | 380 | 340 | 310 | 345 |
240 | 675 | - | 440 | 390 | 355 | - |
300 | 770 | - | - | - | - | - |
400 | 940 | - | - | - | - | - |
500 | 1080 | - | - | - | - | - |
625 | 1170 | - | - | - | - | - |
800 | 1310 | - | - | - | - | - |
Таблица 8. Допустимый длительный токдля кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией нанизкое напряжение в свинцовой оболочке, прокладываемых в воздухе, А
6 | - | 42 | 35 | - | - | - |
10 | 75 | 55 | 46 | 42 | - | 45 |
16 | 90 | 75 | 60 | 50 | 46 | 60 |
25 | 125 | 100 | 80 | 70 | 65 | 75 |
35 | 155 | 115 | 95 | 85 | 80 | 95 |
50 | 190 | 140 | 120 | 110 | 105 | 110 |
70 | 235 | 175 | 155 | 135 | 130 | 140 |
95 | 275 | 210 | 190 | 165 | 155 | 165 |
120 | 320 | 245 | 220 | 190 | 185 | 200 |
150 | 360 | 290 | 255 | 225 | 210 | 230 |
185 | 405 | - | 290 | 250 | 235 | 260 |
240 | 470 | - | 330 | 290 | 270 | - |
300 | 555 | - | - | - | - | - |
400 | 675 | - | - | - | - | - |
500 | 785 | - | - | - | - | - |
625 | 910 | - | - | - | - | - |
800 | 1080 | - | - | - | - | - |
Таблица 9. Допустимый длительный ток для кабелей с медными жилами с пластмассовой изоляцией на напряжение до 3 кВ, А
1,5 | 29 | 32 | 24 | 33 | 21 | 28 |
2,5 | 40 | 42 | 33 | 44 | 28 | 37 |
4 | 53 | 54 | 44 | 56 | 37 | 48 |
6 | 67 | 67 | 56 | 71 | 49 | 58 |
10 | 91 | 89 | 75 | 94 | 66 | 77 |
16 | 121 | 116 | 101 | 123 | 87 | 100 |
25 | 160 | 148 | 134 | 157 | 115 | 130 |
35 | 197 | 178 | 166 | 190 | 141 | 158 |
50 | 247 | 217 | 208 | 230 | 177 | 192 |
70 | 318 | 265 | - | - | 226 | 237 |
95 | 386 | 314 | - | - | 274 | 280 |
120 | 450 | 358 | - | - | 321 | 321 |
150 | 521 | 406 | - | - | 370 | 363 |
185 | 594 | 455 | - | - | 421 | 406 |
240 | 704 | 525 | - | - | 499 | 468 |
Таблица 10. Допустимый длительный ток для кабелей с алюминиевыми жилами с пластмассовой изоляцией на напряжение до 3 кВ, А
2,5 | 30 | 32 | 25 | 33 | 21 | 28 |
4 | 40 | 41 | 34 | 43 | 29 | 37 |
6 | 51 | 52 | 43 | 54 | 37 | 44 |
10 | 69 | 68 | 58 | 72 | 50 | 59 |
16 | 93 | 83 | 77 | 94 | 67 | 77 |
25 | 122 | 113 | 103 | 120 | 88 | 100 |
35 | 151 | 136 | 127 | 145 | 109 | 121 |
50 | 189 | 166 | 159 | 176 | 136 | 147 |
70 | 233 | 200 | - | - | 167 | 178 |
95 | 284 | 237 | - | - | 204 | 212 |
120 | 330 | 269 | - | - | 236 | 241 |
150 | 380 | 305 | - | - | 273 | 274 |
185 | 436 | 343 | - | - | 313 | 308 |
240 | 515 | 396 | - | - | 369 | 355 |
Таблица 11. Допустимый длительный ток для кабелей с пластмассовой изоляцией на напряжение 6 кВ, А
10 | 50 | 55 | 65 | 70 |
16 | 65 | 70 | 85 | 92 |
25 | 85 | 90 | 110 | 122 |
5 | 105 | 110 | 135 | 147 |
50 | 125 | 130 | 165 | 175 |
70 | 155 | 160 | 210 | 215 |
95 | 190 | 195 | 255 | 260 |
120 | 220 | 220 | 300 | 295 |
150 | 250 | 250 | 335 | 335 |
185 | 290 | 285 | 285 | 380 |
240 | 345 | 335 | 460 | 445 |
cable.ru