Определение лампы накаливания. Оценка элементов конструкции и технических характеристик ламп накаливания
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Лампы накаливания: виды, технические характеристики, как правильно выбрать. Определение лампы накаливания


Принцип действия, устройство, характеристики и КПД лампы накаливания

Щелчок выключателя - и темная комната вмиг преобразилась, стали видны детали мельчайших элементов интерьера. Так мгновенно распространяется энергия от маленького устройства, заливая светом все вокруг. Что же заставляет создавать такое мощное излучение? Ответ сокрыт в названии осветительного прибора, который именуется лампой накаливания.

История создания первых осветительных элементов

Истоки возникновения первых ламп накаливания восходят к началу XIX столетия. Вернее сказать, лампа появилась чуть позже, но эффект свечения платины и угольных стержней под действием электрической энергии уже пытались наблюдать. Перед учеными возникло два сложных вопроса:

  • нахождение материалов высокого сопротивления, способных раскаляться под воздействием тока до состояния излучения света;
  • предотвращение быстрого сгорания материала в воздушной среде.

Наиболее плодотворными в этой области стали исследования и изобретения русского ученого Александра Николаевича Лодыгина и американца Томаса Эдисона.

Лодыгин предложил использовать в качестве элемента накаливания угольные стержни, которые находились в герметичной колбе. Недостатком конструкции была сложность выкачки воздуха, остатки которого способствовали быстрому сгоранию стержней. Но все же его лампы горели несколько часов, а разработки и патенты стали основой для создания более долговечных устройств.

Американский ученый Томас Эдисон, ознакомившись с работами Лодыгина, сделал эффективную вакуумную колбу, в которую поместил угольную нить из бамбукового волокна. Также Эдисон снабдил цоколь лампы резьбовым соединением, присущим современным лампам, и изобрел множество электротехнических элементов, таких как: штепсельный разъем, плавкий предохранитель, поворотный выключатель и многое другое. КПД лампы накаливания Эдисона был маленьким, хотя она могла работать до 1000 часов времени и получила практическое применение.

Впоследствии вместо угольных элементов было предложено использовать тугоплавкие металлы. Нить из вольфрама, применяемая в современных лампах накаливания, также была запатентована Лодыгиным.

Устройство и принцип действия лампы

Конструкция лампы накаливания принципиально не изменяется уже более сотни лет. Она включает в себя:

  • Герметичную колбу, ограничивающую рабочее пространство и наполненную инертным газом.
  • Цоколь, который имеет спиральную форму. Он служит для удержания лампы в патроне и электрического соединения ее с токоведущими частями.
  • Проводники, ведущие ток от цоколя к спирали и удерживающие ее.
  • Спираль накаливания, нагревание которой и создает излучение световой энергии.

Когда электрический ток проходит через спираль, она мгновенно нагревается до высочайших температур вплоть до 2700 градусов. Это обусловлено тем, что спираль имеет большое сопротивление току и на преодоление этого сопротивления расходуется много энергии, которая выделяется как тепло. Тепло раскаляет металл (вольфрам), и он начинает излучать фотоны света. Благодаря тому что колба не содержит кислород, в процессе нагрева не происходит окисление вольфрама, и он не перегорает. Инертный газ удерживает частички раскаленного металла от испарения.

Что такое КПД лампы накаливания

Коэффициент полезного действия показывает, какой процент затраченной энергии преобразуется в полезную работу, а какой нет. В случае лампы накаливания КПД невелик, так как всего 5-10% энергии идет на излучение света, остальная выделяется в качестве тепла.

КПД первых ламп накаливания, где телом накала выступал угольный стержень, был еще меньшим по сравнению с современными устройствами. Это обусловлено дополнительными потерями на конвекцию. Спиральные нити накала имеют более низкий процент этих потерь.

КПД лампы накаливания напрямую зависит от температуры нагрева спирали. Стандартно спираль лампы 60 Вт нагревается до 2700 ºС, при этом КПД всего 5%. Можно поднять величину нагрева до 3400 ºС, повысив напряжение, но это снизит срок службы устройства более чем на 90%, хотя лампа засветит ярче, и КПД возрастет до 15%.

Неправильно думать, что увеличение мощности лампы (100, 200, 300 Вт) ведет к увеличению КПД только потому, что повысилась яркость устройства. Лампа стала светить ярче за счет большей мощности самой спирали, а вследствие и большей световой отдачи. Но затраты энергии также возросли. Поэтому КПД лампы накаливания 100 Вт будет также в пределах 5-7%.

Разновидности ламп накаливания

Лампы накаливания бывают различного конструктивного исполнения и функционального назначения. Они делятся на осветительные приборы:

  • Общего применения. К ним относятся лампы бытового использования разной мощности, рассчитанные на сетевое напряжение в 220 В.
  • Декоративного исполнения. Имеют нестандартные типы колб в виде свечей, сфер и других форм.
  • Иллюминационного типа. Маломощные лампы с цветным покрытием для создания красочных иллюминаций.
  • Местного назначения. Устройства безопасного напряжения до 40 В. Применяют на производственных столах, для освещения рабочих мест станков.
  • С зеркальным покрытием. Лампы, создающие направленный свет.
  • Сигнального типа. Служат для работы в приборных панелях различных устройств.
  • Для транспорта. Широкая линейка ламп повышенной износостойкости и надежности. Характеризуются удобной конструкцией, предполагающей быструю замену.
  • Для прожекторов. Лампы повышенной мощности, доходящей до 10 000 Вт.
  • Для оптических устройств. Лампы для кинопроекторов и аналогичных устройств.
  • Коммутаторные. Применяемые в качестве сегментов индикатора цифрового отображения измерительных приборов.

Положительные и отрицательные стороны ламп с телом накала

Осветительные устройства накального типа имеют свои особенности. К положительным можно отнести:

  • мгновенный розжиг спирали;
  • экологическую безопасность;
  • небольшие размеры;
  • приемлемую цену;
  • возможность создавать устройства разной мощности и величины рабочего напряжения как переменного, так и постоянного тока;
  • универсальность применения.

К отрицательным:

  • низкий КПД лампы накаливания;
  • чувствительность к скачкам напряжения, снижающим срок эксплуатации;
  • малое время рабочих часов, не превышающих 1000;
  • пожароопасность ламп из-за сильного нагрева колбы;
  • хрупкость конструкции.

Другие типы осветительных приборов

Существуют осветительные лампы, принцип действия которых в корне отличается от работы ламп накаливания. К ним относятся газоразрядные и светодиодные лампы.

Дуговых или газоразрядных ламп существует большое множество, но все они основаны на свечении газа при возникновении дуги между электродами. Свечение происходит в спектре ультрафиолета, который потом преобразуется в видимый человеческому глазу посредством прохождения через люминофорное покрытие.

Процесс, происходящий в газоразрядной лампе, включают два этапа работы: создание дугового разряда и поддержание ионизации и свечения газа в колбе. Поэтому все типы таких осветительных приборов имеют систему управления током. Устройства люминесцентные имеют более высокий коэффициент полезного действия по сравнению с КПД лампы накаливания, но небезопасны, так как содержат пары ртути.

Светодиодные осветительные устройства являются наиболее современными системами. КПД лампы накаливания и светодиодной лампы несравнимы. У последней оно достигает 90%. Принцип действия светодиода основан на свечении определенного типа полупроводника под воздействием напряжения.

Чего не любит лампа накаливания

Срок службы обычной лампы накаливания будет сокращен, если:

  1. Напряжение в сети постоянно завышено от номинального, на которое рассчитан осветительный прибор. Это связано с увеличением рабочей температуры тела накала и, как следствие, повышенное испарение сплава металла, приводящего к выходу его из строя. Хотя КПД лампы накаливания при этом будет больше.
  2. Резко тряхнуть лампу во время работы. Когда металл раскален до состояния близкого к плавлению, а расстояние между витками спирали уменьшено вследствие расширения вещества, любое механическое, резкое движение может привести к незаметному глазу межвитковому замыканию. Это уменьшает общее сопротивление спирали току, способствует ее большему разогреву и быстрому перегоранию.
  3. Произойдет попадание влаги на разогретую колбу. В месте попадания возникает перепад температур, который производит разрушение стекла.
  4. Дотронуться пальцами до колбы галогенной лампы. Галогенная лампа является разновидностью лампы накаливания, но имеет значительно большую световую и тепловую отдачу. При касании на колбе остается невидимое жирное пятно от пальца. Под воздействием температуры жир сгорает, образуя нагар, препятствующий теплоотдаче. В результате этого в месте прикосновения стекло начинает плавиться и может лопнуть или вздуться, нарушая газовый режим внутри, что приводит к перегоранию спирали. Галогенные лампы накаливания КПД имеют выше, чем обыкновенные.

Как заменить лампу

Если лампа перегорела, но не разрушилась колба, то заменить ее можно после полного остывания. При этом следует отключить питание. При вкручивании лампы глаза не нужно направлять в ее сторону, особенно если выключить электричество не представляется возможным.

Когда колба лопнула, но сохранила форму, желательно взять хлопчатобумажную ткань, свернуть в несколько слоев и, обхватив ею лампу, постараться удалить стекло. Далее пассатижами с изолированными ручками аккуратно выкрутить цоколь и вкрутить новую лампу. Все операции необходимо проводить при отключенном напряжении питания.

Заключение

Несмотря на то что КПД лампы накаливания составляет мало процентов и у нее появляется все больше конкурентов, она актуальна во многих сферах жизни. Существует даже самая старая лампочка, непрерывно работающая более ста лет. Это ли не подтверждение и увековечивание гениальности мысли человека, стремящегося изменить мир?

fb.ru

разновидности + маркировка и правила выбора

Несмотря на целый перечень недостатков, выявленных при сравнении с другими источниками искусственного света, лампы накаливания остаются востребованными и в бытовой сфере, и в промышленных отраслях.

Дешевые и простые в использовании приборы не хотят сдавать свои позиции, хотя на рынке появилось огромное количество более экономичных и «долгоиграющих» заменителей – например, ламп на светодиодах.

Содержание статьи:

Устройство лампы с нитью накала

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно, поэтому с их конструкционными особенностями знакомы многие. Причем иногда приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570°С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422°С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850°С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Виды и применение ЛН

Качественные характеристики и маркировка вольфрамовых лампочек регламентирована ГОСТ Р 52712-2007. По типу наполнения колбы приборы ЛН делятся на вакуумные и газополные разновидности.

Первые служат меньше из-за неизбежного испарения вольфрамовой нити. Вдобавок вольфрамовые испарения оседают на стеклянной оболочке вакуумного источника, что ощутимо снижает прозрачность и способность стекла пропускать свет. Выпускают их с моноспиралью, в номенклатурном обозначении им присвоена литера В.

В газополных приборах минимизированы недостатки вакуумных лампочек. Газ сокращает процесс испарения и препятствует оседанию вольфрама на стенках колбы. Газополные моноспиральные виды обозначены буквой Г, а лампочки с дважды навитой спиралью, т.е. биспиральные, маркируются буквой Б. Если биспиральная разновидность имеет номенклатуру БК, значит, в ее наполнении был использован криптон.

В галогенных лампочках ГЛН к наполнителю стеклянной колбы добавляют бром или йод, благодаря которым испаряющиеся атомы вольфрама после испарения возвращаются снова на нить накала. Галогенки выпускают в двух форматах: в виде кварцевых трубок с длинной спиралью или в капсульном варианте с компактным рабочим элементом.

В государственных стандартах деление на группы происходит по сфере применения, однако затрагиваются и другие характеристики. Предположим, на одном уровне рассматриваются «ЛН электрические миниатюрные» (ЛН мн) и «ЛН инфракрасные зеркальные» (ЗК — приборы с концентрированным светораспределением, ЗД — со средним) – как видите, для обозначения категорий выбраны разные критерии.

Существуют группы, которые можно отнести к наиболее востребованным:

  • общего назначения;
  • для транспортных средств;
  • прожекторные;
  • миниатюрные и пр.

Рассмотрим сферы применения и особенности различных категорий, которые в некоторых случаях могут между собой пересекаться.

Галерея изображений

Фото из

Технические параметры приборов группы регламентируются ГОСТ 2239-79. Это самая большая категория, включающая устройства для бытового и промышленного использования, для внутреннего и уличного применения. Мощность – от 15Вт до 1000Вт. Бывают моноспиральные и биспиральные, вакуумные и газополные

Выпуск осветительных приборов ранее регулировался ГОСТ 1182-77. Мощность ламп ограничена, минимальный показатель – 15 Вт, максимальный – 60 Вт. По требованиям техники безопасности напряжение также ограничено и равняется 12 В в помещениях с особо опасными условиями, 36 В – в обычных помещениях

Категория включает в себя четыре подраздела, деление происходит по видам транспорта: судовые, автомобильные, самолетные, железнодорожные. Особенности каждого вида характеризуются механической прочностью, мощностью, напряжением в сети. Лампы-фары имеют особую конструкцию – вместо традиционного цоколя установлены контакты в виде винтов или ламелей

Особенностью источников света является расположение тала накала, позволяющее достигать максимальной яркости и определенной направленности. В эту группу входят прожекторы для киноаппаратуры, фонари для маяков и лампы для прожекторов общего применения. Часть ламп из категории входят в группу приборов для транспорта – например, прожекторы для ж/д составов

Большая группа приборов с ультратонкой вольфрамовой нитью, работающих под низким напряжением. Миниатюрные устройства востребованы в летательной технике, медицинском оборудовании, электронных изделиях. Часто применяются в качестве индикаторов. Штифтовые и резьбовые цоколи имеют нестандартные, маленькие габариты

Инфракрасные лампы с зеркальным напылением, сравнимые по сфере использования с фарами. Обладают увеличенным сроком службы – до 5 тыс. ч. Мощность – 40-1000Вт, напряжение – от 127 до 220 В. Колбы бывают прозрачными или красными, в зависимости от требуемого излучения. Различают два подвида ламп – концентрированного и широкого светораспределения

Галогенные лампы по всем параметрам превосходят обычные аналоги и насчитываю более 150 номенклатурных наименований. Служат примерно в 2 раза дольше обычных «лампочек Ильича», при одинаковых мощностях имеют большую светоотдачу и уменьшенные размеры. Применяются для использования на транспорте, в оборудовании и прожекторах, для общего освещения

В группу включены приборы, конструкции которых стандартизированы, но отличаются от традиционных исполнений. Это лампы для рудников, железнодорожных светофоров, телефонных коммутаторов. Один из подвидов – цилиндрические лампы, применяемые в различных сферах. Сюда же входят инфракрасные зеркальные приборы с алюминиевым отражателем и матовой наружной поверхностью

ЛОН – лампы общего назначения

Электролампы накаливания местного освещения

Лампы электрические для транспортных средств

Мощные лампы прожекторного типа

Сверхминиатюрные и миниатюрные источники искусственного света

Лампы-светильники направленного нагрева

Галогенки – усовершенствованные лампы накаливания

Категория ламп специального назначения

Описание  технических требований к каждой из перечисленных категорий можно найти в соответствующих разделах ГОСТ. Из-за особенностей конструкции и области применения маркировка устройств из различных групп отличается.

Особенности маркировки по применению

Лампу легче подобрать, если ориентироваться в условных обозначениях. Они отражают важные технические характеристики, возможную область использования, особенности конструкции и технологии изготовления.

Маркировка зарубежных производителей напоминает отечественную, но имеет свои особенности. Обычно она носится методом штамповки на цоколь и служит одним из способов отличия оригинального изделия от подделки

Вначале указаны буквы в количестве от 1 до 4, которые отражают характерные конструктивные особенности. Для более легкой расшифровки за основу взята первая буква основополагающего критерия, например, Г – газополная моноспиральная лампа, В – вакуумная моноспиральная, К – криптоновая и др.

Затем следует указание назначения:

  • Ж – железнодорожная;
  • А – автомобильная;
  • СМ – самолетная;
  • ПЖ – для прожекторов и др.

За буквам расположены цифры, обозначающие технические характеристики – напряжение (В) и мощность (ВТ). Маркировка ламп специального типа отличается: мощность не указана, зато можно определить ток, световой поток или силу света. Если в устройстве две спирали, то мощность для каждой из них указывается отдельно. Последняя цифра может обозначать номер разработки, если конструкция модифицировалась.

Основные технические характеристики

Самым главным параметром источников света с телом накала является мощность, определяемая в ваттах. Назначение ламп разнообразное, поэтому диапазон велик – от 0,1 Вт индикаторных «светлячков» до 23 тыс. Вт прожекторов для маяков. Компании General Electric и Osram выпускают мощные светильники для театральных и кинематографических постановок.

Прожекторные изделия отличаются не только значением мощности (до 24000Вт), но и световым потоком. Светодиодный прожектор способен выдать 400 000 люменов, тогда как специальная лампа накаливания – 800 000 люменов

В быту используют маломощные приборы, в основном, от 15 Вт до 150 Вт, а в промышленной сфере применяют лампы мощностью до 1500 Вт.

Качество светового потока и степень рассеивания регулируются материалом изготовления колбы. Максимальная светопередача характерна для ламп с прозрачным стеклом, тогда как два других типа поглощают часть света. Например, матовое стекло колбы крадет 3% светового потока, а белое – 20%.

Часто мощность бытовых ламп накаливания ограничена материалом светильников (абажуров, плафонов). Производители люстр и бра обычно указывают рекомендованные параметры – как правило, 40 Вт, реже 60 Вт.

Обычные электролампы сильно нагревают окружающие предметы в отличии, например, от светодиодных или маломощных галогенных, поэтому их нельзя использовать для монтажа в натяжные потолки

В 2011 году лампы накаливания официально признаны низко экономичными и пожароопасными, поэтому был принят закон о прекращении выпуска источников света 100 Вт. На очереди – закон о запрете устройств мощнее 50 Вт. Однако пользователь ничего не теряет, так как на современном рынке огромное количество более производительных и экономичных светодиодных и других аналогов.

Таблица, отражающая эффективность работы различных видов бытовых ламп. По указанным техническим характеристикам хорошо видно, как лампы накаливания проигрывают альтернативным вариантам по всем позициям

Сегодня многие отказываются от устаревшего вида ламп из-за большого потребления электроэнергии и короткого срока службы. Однако существуют категории людей, предпочитающие покупать дешевые и неэффективные источники – благодаря им производство лампочек накаливания продолжается.

Второй важный показатель, который обязательно нужно учитывать при покупке, — вид цоколя лампы накаливания, определяемый размером. У импортных и отечественных светодиодных ламп множество разновидностей цоколей, тогда как простые лампы ограничиваются тремя.

Если необходимо заменить лампочку в люстре или настольном светильнике, то обязательно обратите внимание на диаметр цоколя – Е14 или Е27. Приборы с цоколем Е40 в быту не применяют

Сейчас производителей обязывают упаковывать каждое изделие в отдельную коробочку, так что технические характеристики можно отыскать на ней. Обычно указывают мощность, класс энергоэффективности (низкий – Е), тип цоколя, прозрачность колбы, срок службы в часах.

Преимущества и недостатки ламп накаливания

Потребитель продолжает приобретать неэкономчные лампочки благодаря целому ряду плюсов, хотя некоторые из них весьма условны. По отзывам, их выбирают из-за следующих качеств:

  • невысокая стоимость;
  • отсутствие пускорегулирующего оборудования;
  • моментальное зажигание после включения;
  • привычный «домашний» свет;
  • отсутствие вредных веществ;
  • нет реакции на низкую температуру и электромагнитные импульсы.

Однако мало кто оценивает качество светового потока или пульсацию, все же для большинства решающим оказывается первый фактор.

Но недостатки гораздо весомее, так как среди них сравнительно низкая световая отдача, ограниченный срок службы, небольшой диапазон цветовой температуры (только желтый свет), зависимость от перепадов напряжения в сети, пожароопасность.

Если включить лампу накаливания мощностью 40 Вт, спустя полчаса она нагревается до +145-148°С и начинает нагревать окружающие предметы, что чревато случайным возгоранием

Сейчас существует возможность сравнить на практике работу ламп накаливания, газоразрядных и светодиодных аналогов. Каждый, кто заметил разницу в энергопотреблении, давно перешел на энергосберегающие устройства.

Как правильно выбрать лампочку

При покупке лампочки ориентируются в первую очередь на величину цоколя и мощность. Эти два параметра легко определить по старому, перегоревшему источнику света.

Если вы выберете устройство меньшей мощности, то световой поток будет слабее, если большей, то рискуете целостностью плафонов – они могут деформироваться из-за высокой температуры нагрева.

Специально для любителей традиционных лампочек выпускаются филаментные устройства на светодиодах, похожие по форме, но выгодно отличающиеся своими характеристиками

Кроме технических характеристик стоит обратить внимание на качество изготовления лампы. Предпочтение стоит отдать изделиям с широким контактом цоколя, пропаянным токопроводом, стабильно закрепленной нитью накала.

Выводы и полезное видео по теме

Еще больше познавательной и интересной информации о производстве, использовании и недостатках ламп накаливания – в видеороликах, снятых специалистами и любителями.

Интересные факты о лампах накаливания:

Как происходит производство ЛН:

Сравнительный обзор ламп разных видов:

Популярно о выборе ламп для дома:

Потребитель сам вправе выбрать лампочку для использования в быту. Однако не стоит гнаться за дешевизной и обманчивой выгодой. Учитывая, что освещением мы пользуемся постоянно, а лампочек в доме, как правило, более десятка, следует пересмотреть привычки. Многие пользователи давно уже перешли на более надежные, экономичные, безопасные светодиодные лампы.

sovet-ingenera.com

Лампа накаливания | Физика

Открытие теплового действия тока привело к изобретению лампы накаливания — источника света, без которого немыслима современная жизнь.

Лампа накаливания была изобретена в 1872 г. русским электротехником А. Н. Лодыгиным. Основным элементом первой лампы был тонкий угольный стерженек, нагреваемый током до температуры, при которой он начинал светиться. Стерженек размещался под стеклянным колпаком.

Срок службы первых ламп Лодыгина составлял всего лишь 30—40 мин. Однако путем совершенствования конструкции (откачивание воздуха из колбы, использование нескольких стерженьков, поочередно сгорающих в лампе) Лодыгину удалось существенно увеличить продолжительность их работы.

В 1877 г. о работах Лодыгина узнал знаменитый американский изобретатель Т. А. Эдисон. Он решил усовершенствовать новый источник света. Чтобы как можно сильнее замедлить процесс горения угольного стержня в лампе, Эдисон с помощью сконструированного им же насоса добился такого разрежения в лампе, что давление воздуха в ней оказалось в миллион раз меньше атмосферного.

Несколько месяцев у него ушло на поиски нового материала для тела накаливания. Он пробовал все, что попадалось ему на глаза. Более шести тысяч веществ было проверено Эдисоном в поисках того материала, который мог бы не перегорать в лампе дольше всего. Когда выяснилось, что в качестве такового можно использовать бамбук, агенты Эдисона стали искать нужное растение в Японии, на Кубе, Ямайке, в Китае, Бразилии, Индии и Эквадоре. Некоторые из них погибли от укусов ядовитых змей, другие — от желтой лихорадки, но необходимый материал все-таки был найден. Обуглив и обработав волокна бамбука специальными химическими растворами, Эдисон получил тонкую нить, дававшую под действием тока яркий и ровный свет. Попутно он усовершенствовал систему ввода проводов в лампу, изобрел очень удобную вставку для нее (эдисоновский патрон) и сконструировал выключатель, с помощью которого можно было включать и выключать свет. Продолжительность работы лампы достигла 800 ч, и она стала удобной и практичной.

В ночь на 1 января 1880 г. семьсот эдисоновских ламп осветили здание с лабораторией, где работал изобретатель, а также двор, ворота и окружающий забор. Сотни людей с изумлением наблюдали этот чудесный свет, озаривший все вокруг в эту новогоднюю ночь. Весть об эдисоновском свете быстро распространилась по всей Америке. А еще через некоторое время первая партия ламп (1800 штук) была отправлена в Европу. Новые и удобные источники света стали использовать для электрического освещения улиц, домов и кораблей.

Тем временем Лодыгин тоже не переставал думать над улучшением лампы. В 1890 г. он внес существенное усовершенствование в ее конструкцию: вместо угольной нити он применил вольфрамовую, которая и используется поныне. Вольфрам является самым тугоплавким металлом (tпл = 3400 °С), и сделанная из него нить оказалась очень долговечной. Через несколько лет этой нити придали зигзагообразную, а затем и спиральную форму (рис 48), и лампа приобрела современный вид.

Устройство современной лампы накаливания показано на рисунке 49. Концы нити накала (вольфрамовой спирали) 1 приварены к двум проволокам (вводам), которые проходят сквозь стеклянную ножку 2 и припаяны к металлическим частям цоколя 3 лампы: одна проволока — к его винтовой нарезке, а другая — к изолированному от нарезки центральному выводу 4. Патрон 7 служит для включения лампы в сеть. Ввинчивание лампы в патрон осуществляется благодаря винтовой нарезке 6. Внутри патрона основание цоколя лампы касается пружинящего контакта 5. Этот контакт, а также винтовая нарезка патрона соединены с зажимами, к которым прикрепляют провода от сети.

При прохождении тока через вольфрамовую спираль она нагревается до температуры около 3000 °С. При этом нить достигает белого каления и начинает ярко светить. Чтобы замедлить испарение нити, лампу наполняют каким-либо инертным газом (например, аргоном или криптоном).

На каждой лампе указываются электрическая мощность P и напряжение U, на которые она рассчитана. Например, для освещения в квартирах обычно используются лампы мощностью 40, 60 и 100 Вт при напряжении 220 В. Для сравнения укажем, что лампа мощностью 100 Вт дает столько же света, сколько тысяча стеариновых свечей. По значениям мощности и напряжения, указанным на лампе, можно определить ее рабочее сопротивление (т. е. сопротивление нагретой лампы):

R = U2/P      (20.1)

Если напряжение на лампе окажется меньше номинального, то выделяющаяся мощность уменьшится и свечение лампы станет менее ярким. И наоборот, при увеличении напряжения по сравнению с номинальным на 1 % лампа начнет светить ярче, но срок ее службы сократится на 15%. Если же напряжение превысит номинальное на 15%, лампа тут же выйдет из строя.

В настоящее время мировое производство ламп накаливания составляет свыше 10 млрд штук в год, а количество разновидностей ламп превышает 2000. Эти лампы отличаются друг от друга назначением (осветительные, проекционные, для фар и т. д.), а также формой тела накала и размерами колбы. Последние составляют от нескольких миллиметров (у сверхминиатюрных ламп) до нескольких десятков сантиметров (у крупногабаритных прожекторных ламп). Рассчитаны они на напряжения от долей до сотен вольт при мощности, достигающей десятков киловатт. Срок службы современных ламп может превышать 1000 ч.

??? 1. Как устроена осветительная лампа накаливания? 2. Кто и когда изобрел эту лампу? 3. Почему нить накала лампы делают из вольфрама? 4. Выведите формулу (20.1).

phscs.ru

Лампы накаливания технические характеристики

Дата публикации: 27 июля 2014.

Электрические и световые параметры

Параметры ламп накаливания или характеристики ламп накаливания, принято делить на три группы – электрические, световые и эксплуатационные. Электрические параметры характеризуют лампу как потребителя электрической энергии и определяют возможность ее подключения к источникам питания (электрической сети). К электрическим параметрам относят номинальное напряжение и номинальную мощность лампы, ток является величиной производной и определяется расчетом.

Световые параметры более разнообразны. Нормирование тех или иных определяет назначение лампы. У ламп накаливания, предназначенных для общего освещения, основными техническими характеристиками являются световой поток и световая отдача. Для сигнальных ламп важным параметром является яркость, для ламп-светильников – кривые силы света и тому подобное.

Эксплуатационные параметры определяют возможность и технико-экономическую целесообразность применения ламп данного типа в той или иной осветительной установке. В этом смысле к эксплуатационным параметрам следует относить и электрические, и световые параметры. Поэтому, говоря об эксплуатационных параметрах ламп, обычно имеют ввиду срок службы ламп, стабильность светового потока, параметры внешней среды и ряд дополнительных требований.

Основным электрическим параметром лампы накаливания является номинальное напряжение лампы Uл.ном. Для большинства ламп накаливания это напряжение соответствует напряжению источника питания.

Основная масса ламп накаливания общего применения работает от электрических сетей энергосистем, которые для осветительных установок можно считать источниками неограниченной мощности. Поэтому в течение длительного времени для ламп накаливания общего назначения напряжение питающей сети являлось и номинальным напряжением ламп накаливания. Все остальные электрические параметры ламп накаливания относили именно к этому номинальному напряжению. Вместе с тем, напряжение в осветительных сетях часто отличается от номинального. Поэтому в целях улучшения эксплуатационных характеристик ламп согласно ГОСТ 2239-79 введено пять интервалов напряжения питания: 125 – 135, 215 – 225, 220 – 230, 230 – 240 и 235 – 245 В, причем за номинальное напряжение ламп в соответствии с международной классификацией приняты напряжения 130, 220, 225, 235 и 240 В.

Источники питания ограниченной мощности (аккумуляторные батареи, автомобильные генераторы, сухие элементы и так далее) отличаются тем, что средние значения их фактического напряжения не соответствуют номинальному. Поэтому для ламп накаливания, предназначенных для работы от таких источников питания, помимо номинального напряжения применяют так называемое расчетное напряжение Uл.р, то есть среднее напряжение, при котором будет работать лампа накаливания. Соответственно все ее остальные параметры относят к расчетному напряжению.

Вторым важным электрическим параметром ламп накаливания является мощность. Под номинальной мощностью лампы накаливания данного типа Pл.ном понимают расчетную электрическую мощность, которая выделяется в лампе накаливания данного типа при ее включении на номинальное (или расчетное) напряжение. Практически для партии ламп – это среднее значение мощности для достаточно большой группы ламп этого типа. Возможный разброс значений мощности отдельных ламп ограничивается верхним пределом допустимой мощности для ламп данного типа.

Для отдельных типов ламп, в частности предназначенных для работы от химических источников тока, вместо номинальной мощности иногда нормируется номинальный ток Iл.ном, для которого устанавливается ограничение его верхнего значения.

Основная светотехническая характеристика ламп накаливания определяется назначением лампы. Для осветительных ламп это световой поток Фл. Практически номинальным световым потоком лампы является среднее значение светового потока большой партии ламп данного типа. Применительно к каждой лампе накаливания можно говорить о нижнем допустимом пределе светового потока. Ограничение верхнего предела не имеет смысла, так как повышение светового потока может быть достигнуто увеличением мощности лампы, верхний предел которой, ограничивается, а так же повышением температуры тела накала, что неизбежно приведет к снижению срока службы лампы и разбраковке партии по этому параметру.

Изменяя конструкцию и конфигурацию тела накала или применяя колбы специальной формы, можно получить лампы накаливания с заданной кривой силой света. Для таких ламп помимо нормирования светового потока нормируют одно или несколько значений силы света Iv в заданных направлениях. Число точек нормирования силы света определяется возможностью контроля кривой с заданной точностью.

Лампы накаливания имеют различную яркость свечения L, что связано с многообразием областей их применения. Например, прожекторные лампы, лампы для сигнальных приборов, кинопроекционной аппаратуры имеют высокую яркость, значение которой в ряде случаев нормируют. И, наоборот, для освещения жилых помещений требуется пониженная яркость, поэтому такие лампы накаливания часто выпускают в матированных колбах.

Для ламп, применяемых в оптических приборах, эффективность действия которых определяется яркостью тела накала, желательно нормирование габаритной яркости тела накала. Сложность определения такой яркости путем измерения силы света и деления результата на площадь проекции тела накала на плоскость, перпендикулярную направлению силы света, привела к тому, что от этого нормирования отказались, сведя контроль ламп к измерениям силы света в заданных направлениях и основных геометрических размеров тела накала.

Световая отдача η, являющаяся важной свето технической характеристикой качества ламп и их основным эксплуатационным показателем, в настоящее время исключена из числа нормируемых величин, так как она определяется расчетным путем как отношение светового потока к мощности лампы, измеренных при номинальном напряжении лампы. Световая отдача вместе с тем является важнейшим параметром ламп накаливания, определяющим экономичность генерирования светового потока. Световая отдача ламп накаливания растет с увеличением их мощности, для ламп одинаковой мощности она больше у ламп, рассчитанных на меньшее номинальное напряжение. Для ламп накаливания данной мощности и конструкции световой поток, определяющий световую отдачу, зависит от температуры нити накала и ее излучательных свойств. Препятствием к повышению температуры вольфрама, является увеличение скорости его испарения, что было в значительной мере преодолено при использовании галогенных циклов.

Эксплуатационные параметры

К основным геометрическим параметрам ламп накаливания относят те размеры, которые влияют на возможность их применения в тех или иных светильниках или установках. Основными из этих параметров для всех без исключения ламп накаливания являются их габаритные размеры (рисунок 1): наибольший диаметр колбы dк, измеряемый в плоскости, перпендикулярной оси лампы, полная длина лампы l, измеряемая, как правило, в направлении оси лампы, и тип цоколя. Важным геометрическим размером лампы накаливания является высота светового центра h, относительно которого дается кривая силы света лампы. Эта точка совпадает с центром тяжести тела накала, полученным геометрическим построением. Высота светового центра измеряется параллельно оси лампы и отсчитывается от той детали цоколя, которая определяет его положение в патроне. Эту деталь называют фиксирующим элементом цоколя.

Рисунок 1. Основные размеры лампы накаливания

Для ламп с фокусирующим цоколем дополнительными геометрическим параметрами являются размеры и допуски, определяющие положение светового центра относительно цоколя и его фокусирующих элементов.

Для ламп, применяемых в оптических приборах, в которых большое значение имеет габаритная яркость тела накала, дополнительно задают размеры тела накала, в том числе длину светящейся нити, диаметр моноспирали (или биспирали), площадь, заполненную светящейся частью тела накала, и тому подобные.

Важными эксплуатационными параметрами ламп накаливания, так же как и других источников света, являются их средний срок службы τ, полный срок службы τполн, определяемый временем горения лампы до ее отказа, и полезный срок τп, определяемый временем горения до уменьшения светового потока в заданном пределе. Практическое равенство τполн = τп = τ означает оптимальное конструирование отдельных частей лампы, исключающее лишний запас по надежности отдельных частей и деталей, в основном тела накала, и стабильную  технологию производства. Проверка совпадения значений τп и τполн достигается тем, что при испытании ламп на средний срок службы производят измерение конечного светового потока ламп, оставшихся целыми к моменту достижения срока, равного нормированной средней продолжительности горения.

К эксплуатационным параметрам ламп относится и минимальный допустимый световой поток, ниже которого эксплуатация ламп накаливания становится неэкономичной. Для современных ламп накаливания конечный световой поток составляет 85 – 90% начального.

В качестве примера нормирования параметров ламп накаливания в таблице 1 приведены регламентированные ГОСТ 2239-79 параметры ламп накаливания общего назначения с криптоновым наполнением.

Таблица 1

Параметры некоторых осветительных ламп накаливания общего назначения с криптоновым наполнением по ГОСТ 2239-79.

Типы ламп Номинальное значение
напряжения, В мощности, Вт светового потока, лм
БК125-135-40БК125-135-60 БК125-135-100БК125-225-40 БК125-225-60БК125-225-100 130130 130220 220220 4060 10040 60100 520875 1630415 7901450

Для ламп накаливания, применяемых для освещения транспортных средств, нормируемым эксплуатационным параметром является также динамический срок службы.

К эксплуатационным параметрам любых ламп накаливания относят характеристику климатических условий, в пределах которых обеспечиваются все перечисленные параметры. Климатические условия эксплуатации характеризуются: интервалом температур внешней среды, в пределах которого должна сохраняться работоспособность лампы; интервалом влажности, точнее, верхним пределом влажности среды; интервалом изменения давления окружающей среды.

Для изделий нормального исполнения, предназначенных для эксплуатации на всей территории страны, обычно принимают следующие значения перечисленных выше параметров: интервал температур от – 60 до + 50 °С; относительная влажность не выше 98% при 20 °С и давление не ниже 0,75 × 105 Па (верхний предел не оговаривается с учетом того, что давление выше максимально возможного атмосферного быть не может).

Источник: Афанасьева Е. И., Скобелев В. М., "Источники света и пускорегулирующая аппаратура: Учебник для техникумов", 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272 с.

artillum.ru

технические характеристики, виды и принцип их работы

Среди искусственных источников освещения самыми массовыми являются лампы накаливания. Везде, где есть электрический ток, можно обнаружить трансформацию его энергии в световую, и почти всегда для этого используются лампы накаливания. Разберемся, как и что в них накаливается, и какими они бывают.

Принцип действия и особенности конструкции

  1. Тело накала
  2. Общий принцип действия лампы накаливания состоит в сильном нагревании тела накала потоком заряженных частиц. Для излучения видимого человеческим глазом спектра температура светящегося объекта должна достигать 570 ⁰С, т.н. красное излучение, а для комфортного освещения окружающего пространства превышать это значение в 4-5 раз.

    Наибольшая температура плавления среди металлов принадлежит вольфраму (3410 ⁰С), именно поэтому в качестве тела накала используют вольфрамовую проволоку, свернутую в спираль для уменьшения занимаемого объема при сохранении площади поверхности излучения.

    Температура спирали в лампе накаливания во включенном режиме 2000-2800 ⁰С, что соответствует цветовой температуре в 2200-3000К или теплому желтоватому спектру. Хотя он и более тусклый, чем дневной, цветовая температура которого около 5700К, но в темное время суток, а это основной период эксплуатации ламп накаливания, желтый свет предпочтительнее для человека.

    Причина в том, что его спектр не влияет на естественный синтез мелатонина – важнейшего гормона, вырабатываемого шишковидной железой и ответственного за биоритмы и согласованную работу всех остальных желез организма.

  3. Колба, держатель и токовые вводы
  4. Для предотвращения окисления вольфрама, тело накала размещают в герметичном стеклянном сосуде, заполненном инертным газом. Как правило, это аргон, иногда азот или криптон. При постоянном нагреве вольфрам со временем испаряется, а инертные газы создают давление, препятствующее этому, и увеличивают срок службы лампы.

    Чтобы узнать, как выбрать светодиодные лампы для дома, желательно изучить и проанализировать характеристики различных источников LED освещения.

    Другим вариантом воплощения различных дизайнерских решений является использование светодиодных лент. Как установить такой вид освещения своими руками, подскажет интересная статья.

    В стеклянной колбе установлен держатель тела накала, к которому через герметичный цоколь подведены электроды. Крючки держателя, непосредственно контактирующие с вольфрамовой спиралью, изготавливают из молибдена.

  5. Цоколь лампы накаливания
  6. Цоколь также является конструктивным элементом, присущим всем лампам накаливания, за исключением специализированных автомобильных ламп. В России, также как и в Европе, бытовые лампы имеют резьбовой цоколь Эдисона трех стандартных размеров: Е14, Е27 и Е40. В Британии используют цоколи без резьбы на защелкивающемся байонете, а в США и Канаде иной диаметр резьбового соединения: Е12, Е17, Е26, Е39.

Особенности конкретной лампы можно узнать, изучив индекс, выбитый на ее металлическом цоколе.

В индексе используются следующие цифро-буквенные обозначения:
  • Б — Биспиральная, аргоновое наполнение
  • БК — Биспиральная, криптоновое наполнение
  • В — Вакуумная
  • Г — Газополная, аргоновое наполнение
  • ДС, ДШ – Декоративные лампы
  • РН – различные назначения
  • А — Абажур
  • В — Витая форма
  • Д — Декоративная форма
  • Е — С винтовым цоколем
  • Е27 — Вариант исполнения цоколя
  • З — Зеркальная
  • ЗК — Концентрированное светораспределение зеркальной лампы
  • ЗШ — Широкое светораспределение
  • 215-230В — Шкала рекомендуемых напряжений
  • 75 Вт — Потребляемая мощность электроэнергии

Виды ламп накаливания и их функциональное назначение

  1. Лампы накаливания общего назначения
  2. По своему функциональному назначению наиболее распространенными являются лампы накаливания общего назначения (ЛОН). Все ЛОН, производимые в России должны соответствовать требованиям ГОСТ 2239-79. Их применяют для наружного и внутреннего, а также для декоративного освещения, в бытовых и промышленных сетях с напряжением 127 и 220 В и частотой 50 Гц.ЛОН имеют относительно недолгий срок, в среднем около 1000 часов, и невысокий КПД – они преобразуют в свет только 5% электроэнергии, а остальное выделяется в виде тепла.

    Особенностью маломощных (до 25 Вт) ЛОН является используемая в них, в качестве тела накала, угольная нить. Эта устаревшая технология использовалась еще в первых «лампочках Ильича» и сохранилась только здесь.

    Сейсмостойкие лампы, тоже входящие в группу ЛОН, конструктивно способны выдерживать сейсмический удар длительностью до 50 мс.

  3. Лампы накаливания прожекторные
  4. Прожекторные лампы накаливания отличаются значительно большей, по сравнению с остальными видами, мощностью и предназначены для направленного освещения или подачи световых сигналов на дальние расстояния. Согласно ГОСТу их разделяют на три группы: лампы кинопроекционные (ГОСТ 4019-74), для прожекторов общего назначения (ГОСТ 7874-76) и маячные лампы (ГОСТ 16301-80).

    Использование трехжильной проводки в домашней сети обеспечивает высокий уровень пожаробезопасности и уменьшает риски для жизни человека. В решении вопроса — как подключить розетку с заземлением — достаточно следовать элементарным правилам и схеме установки.

    Для оборудования электрических сетей жилых помещений средствами безопасности необходимо сделать выбор между установкой УЗО или дифавтомата. Помочь в этом сможет полезная статья. Установить дифавтомат можно несколькими методами, о которых можно прочитать здесь.

    Тело накала в прожекторных лампах длиннее и при этом расположено более компактно, для усиления габаритной яркости и последующей фокусировки светового потока. Задачу фокусировки решают специальные фокусирующие цоколи, предусмотренные в некоторых моделях, либо оптические линзы в конструкциях прожекторов и маяков.

    Максимальная мощность выпускаемых сегодня в России прожекторных ламп составляет 10 кВт.

  5. Лампы накаливания зеркальные
  6. Зеркальные лампы накаливания отличают особая конструкция колбы и светоотражающий алюминиевый слой. Светопроводящая часть колбы выполнена из матового стекла, что придает свету мягкость и сглаживает контрастные тени от предметов. Такие лампы маркируются индексами обозначающими тип светового потока: ЗК (концентрированное светораспределение), ЗС (среднее светораспределение) или ЗШ (широкое светораспределение).

    К этой же группе относят неодимовые лампы, отличие которых состоит в добавлении окиси неодима в формулу состава, из которого выдувается стеклянная колба. Благодаря этому часть желтого спектра поглощается, и цветовая температура сдвигается в область более яркого белого излучения. Это позволяет использовать неодимовые лампы в интерьерном освещении для большей яркости и сохранения оттенков в интерьере. В индекс неодимовых ламп добавлена буква «Н».

    Сфера применения зеркальных ламп огромна: витрины магазинов, сценическое освещение, оранжереи, теплицы, животноводческие хозяйства, освещение медицинских кабинетов и многое другое.

  7. Лампы накаливания галогенные
  8. Характеристики галогенных ламп накаливания предусматривают обязательное наличие в газовой колбе бром- или иод-галогеновых соединений. Этот нюанс среды, в которой находится тело накала, позволяет испарившимся молекулам вольфрама реагировать с буферным газом и осаждаться обратно на поверхность спирали после температурного распада неустойчивого соединения.

    За счет этого амортизирующего цикла галогенные лампы могут выдерживать больший нагрев спирали, а значит излучать более белый свет, уже около 3000 К, а также имеют увеличенный срок эксплуатации, среднее значение которого 2000 часов.

Но надо знать и о минусах галогенных ламп. Это низкое электрическое сопротивление лампы в остывшем состоянии и невозможность ее применения в системах «Умный дом», где яркость освещения регулируется диммером.

Перед тем, как определить, какая именно лампа накаливания вам нужна, стоит изучить особенности и маркировку существующих типов. При всем их разнообразии, нужно точно понимать назначение выбираемой лампы и то, как и где она будет использоваться. Несоответствие характеристик лампы задачам, под которые она приобретается, может повлечь не только ненужные расходы, но и привести к аварийным ситуациям, вплоть до повреждения электросети и пожара.

Занимательное видео, характеризирующее работу трех видов лампочек

elektrik24.net

Классификация ламп накаливания

Дата публикации: 27 июля 2014.

Лампы накаливания различных типов находят широкое применение во всех без исключения отраслях промышленности и в быту. Производство ламп накаливания в настоящее время все еще остается преобладающим по номенклатуре и объему выпуска. Во многих случаях лампы накаливания не имеют равноценной замены даже более экономичными газоразрядными и светодиодными лампами.

Массовость применения ламп накаливания определяется их удобством включения и обслуживания, большим разнообразием мощностей и напряжений, низкой стоимостью. Основными недостатками ламп накаливания можно считать сравнительно низкую световую отдачу, относительно малый срок службы (не более 2000 часов), а также сравнительно низкую механическую прочность, что ограничивает их применение. Лампы накаливания имеют сплошной спектр излучения. Из-за относительно низких рабочих температур тела накала (2400 – 2600 К) в видимом излучении преобладает оранжево-красная составляющая, что не позволяет обеспечить высокое качество цветопередачи и использовать лампы накаливания в осветительных установках с повышенными требованиями к цветопередаче.

Правильное использование ламп, планирование их производства на основе потребности рынка невозможны без четкой классификации ламп. В основу классификации ламп накаливания положено их назначение, то есть область применения, которая в большинстве случаев совпадает с отраслью, в которой применяются лампы.

По назначению все лампы накаливания делят на две группы: лампы общего назначения, предназначенные для осветительных установок любых зданий, сооружений, открытых пространств, и лампы специального назначения, отвечающие требованиям конкретной области применения (самолетные, автомобильные, проекционные, облучательные и тому подобные).

В таблице 1 приведены основные типы, области применения и параметры ламп накаливания.

Таблица 1

Типы, области применения и параметры ламп накаливания

Наименование лампы Обозначение Область применения Напряжение, В Мощность, Вт Световой поток, лм Срок службы, ч
Общего назначения

Местного освещения

Автомобильные

Железнодорожные СудовыеСамолетные Миниатюрные

Сверхминиатюрные индикаторные

Коммутаторные

Светофорные

Маячные

Кинопроекционные

Галогенные

В, Б, БК, Г

МО, МОЗ, МОД

А, АМН, АС Ж, ЖТ, ЖСКЖМТ ССМ МН

СМН, СМНК

КМ

ЖС

ММ, КГММ

К

КГ, КГО, КГД, КГТ

Внутренне и наружное освещениеРабочие места

Автомобили

Подвижной состав СудаСамолеты Переносные фонари, шкалы приборовМедицинские приборы, пульты управления, сигнальные устройства Телефонные коммутаторыЖелезнодорожные светофоры Маяки, морское навигационное оборудованиеПроекционная, копировальная, киноаппаратура Облучательные установки

125 – 245

12, 24, 36

6, 12, 24

24 – 200 13 – 2202,5 – 115 1 – 36

1,2 – 12

6 – 60

10, 12

6 – 110

4 – 220

127 – 380

15 – 1000

15 – 100

0,8 – 80

10 – 100 25 – 2000,15 – 70 –

5 – 35

3 – 1000

3 – 750

600 – 3500

85 – 19500

200 – 1740

75 – 1050 165 – 26000,3 – 315 2,3 – 85

0,05 – 4

0,4 – 5,7

48 – 380

22 – 20000

20 – 21800

1000

1000

100 – 1500

400 – 1000 200 – 100030 – 1000 6 – 1500

20 – 2000

  500 – 2000

600 – 2000

110 – 440

10 – 600

2000 - 10000

Вторым классификационным признаком ламп накаливания является конструктивно-технологический, определяемый возможностью производить лампы на одном и том же технологическом оборудовании. К конструктивно-технологическим признакам относят размеры и форму колб, тип тела накала, конструкции электродов и других элементов. Кроме того, существуют дополнительные признаки классификации, например по условиям окружающей среды (нормальные, тяжелые), по наполнению ламп (вакуумные, газополные, галогенные) и ряд других.

Лампы накаливания следует выбирать прежде всего в соответствии с назначением данной светотехнической установки, ее технологическими требованиями. Это позволяет улучшить экономические показатели установки. При возможности использования ламп накаливания того или иного типа или мощности выбор наиболее подходящего варианта должен определяться экономическим расчетом по критерию минимальной стоимости единицы светового потока либо по минимальной стоимости израсходованной электроэнергии.

Источник: Афанасьева Е. И., Скобелев В. М., "Источники света и пускорегулирующая аппаратура: Учебник для техникумов", 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272 с.

artillum.ru

Пример решения задачи на определение сопротивления нити накаливания лампы

Для лампы накаливания мощностью сто пятьдесят ват и напряжением двести двадцать вольт необходимо определить величину сопротивления вольфрамовой нити накаливания при температуре двадцать пять градусов Цельсия. Известно, что температура накала нити лампы составляет две тысячи пятьсот градусов Цельсия. Температурный коэффициент сопротивления вольфрама 5,1×10-3град-1.

Дано: U=220 В; Р=150 Вт; t°1=25°C; t°2=2500°C; α=5,1×10-3град-1Найти: R1-?

Решение

Запишем формулы для расчета величины сопротивления нити накаливания при комнатной и рабочей температуре

,,

где R1 — сопротивление нити накаливания при температуре 25 градусов Цельсия;R2 — сопротивление нити накаливания при температуре 2500 градусов Цельсия.

,.

Сопротивление нити накаливания при рабочей температуре определим из формулы

, тогда

Итоговая формула для расчета величины сопротивления нити накаливания при температуре 25 градусов Цельсия принимает вид

Ом.

Ответ: сопротивление вольфрамовой нити накаливания электрической лампы при температуре двадцать пять градусов Цельсия составляет двадцать шесть целых пять десятых Ом.

Поделитесь с друзьями:

zadachi-po-fizike.electrichelp.ru