Схема подключения трехфазного двигателя через магнитный пускатель. Как подключить трехфазный электродвигатель через магнитный пускатель? Какой взять пускатель?
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Схема подключения магнитного пускателя: пошаговое руководство. Схема подключения трехфазного двигателя через магнитный пускатель


Схема подключения магнитного пускателя: пошаговое руководство

Человеку, мало знакомому с электротехникой, может показаться, что электрические приборы и оборудование для управления их работой невероятно сложны. На самом деле это не совсем так, а в основе практически всех мощных систем лежит электромагнитный контактор или пускатель. Без подобных решений обходятся разве что полностью электронные приборы. Зная, как выполняется схема подключения магнитного пускателя, можно не только самостоятельно производить ремонт, но и осуществлять несложный монтаж.

Основной элемент ПРА (пускорегулирующей аппаратуры)

Пускатель магнитный представляет собой электромеханический прибор, предназначенный для прямой коммутации цепей с напряжением до 1 кВ. На нем размещено несколько контактных пар, посредством которых осуществляется переключение линий и распределение электрической энергии.

Иногда в конструкцию пускателя включают тепловое реле, реализующее функцию защиты подключенного оборудования. В зависимости от исполнения различают открытые и закрытые контакторы. Яркий пример первых – знаменитые «жабки» или «лягушки», в которых для доступа к внутренним элементам достаточно вынуть фиксирующий штифт (класс ПАЕ). Вторые – это практически все остальные (ПМЛ, ПМА), установленные внутри пылезащищенных корпусов.

Вспоминая электротехнику

Прежде чем мы рассмотрим, как выполняется подключение магнитного пускателя, стоит вспомнить курс физики старших классов школы. Как известно, при прохождении по проводнику электрического тока вокруг него возникает особый вид материи – магнитное поле, которое оказывает на большинство металлов притягивающее воздействие. Если же взять тонкий проводник и накрутить его на металлический сердечник, то благодаря намагничиванию последнего результирующее поле значительно усиливается. Именно этот принцип положен в основу работы пускателя.

Конструкция

Конструктивно магнитный пускатель представляет собой изделие, «сердцем» которого является катушка, состоящая из магнитопровода (П- или Ш-образная основа из листовой электротехнической стали с высоким внутренним сопротивлением) и намотанной на нем тонкой лакированной проволоки. Вторая часть физически представляет собой продолжение первой, но отделена от нее, будучи подвижной. До подачи тока на катушку между торцами обеих частей есть пространство, которое обеспечивается отбрасывающей пружиной. Стоит возникнуть магнитному полю – и магнитопровод собирается воедино, обеспечивая круговой магнитный поток и срабатывание контактных пар. Схема магнитного пускателя следующая: на подвижной притягиваемой части закреплена система контактов, которые, в зависимости от способа установки, при срабатывании катушки соприкасаются (нормально открытые) или отбрасываются (нормально закрытые) от неподвижных, обеспечивая коммутацию цепей. Контактные группы подразделяются на два типа: основные (силовая цепь) и вспомогательные (сигнализация, блокировка). Вот так все просто.

Изучаем расположение

Большинство контакторов позволяют выполнять коммутацию трех пар силовых контактных групп и до десятка дополнительных. Схема подключения магнитного пускателя описана на многочисленных ресурсах, однако она понятна далеко не всем.

Тот, кто знаком с подобным оборудованием, и так сделает все правильно, а другие же «остаются при своем». Сегодня мы попытаемся простым языком объяснить, как выглядит схема подключения магнитного пускателя.

Берем в руки контактор и внимательно его рассматриваем. Все болтовые подключения как-то обозначены. К сожалению, единого стандарта нет, вернее, у каждого он свой, хотя чаще всего производители придерживаются следующих обозначений:

1. Подключения 1, 3, 5 с одной стороны, а с другой, прямо напротив них – 2, 4, 6. Это выводы подвижных и неподвижных контактов в силовых контактных группах. Чем больше номинальный ток, тем больше габариты болтов и контактные площадки.

2. Рядом или на блоке сбоку есть еще несколько контактов, обозначенных 31, 32 и т. д. Также напротив друг друга. Они служат для сигнальных и блокировочных цепей.

3. В самом низу, на противоположных сторонах корпусах контактора, размещены два контакта – А1 и А2. Это выводы катушки.

Это основа. Иногда в некоторых моделях сверху может устанавливаться специальный блок из дополнительных пар контактов, приводимый в движение штоком на подвижной части магнитопровода.

Проверка устройства

Схема подключения магнитного пускателя может быть проверена при помощи индикатора. Собственно, еще на этапе монтажа данные приборы упрощают работу. Индикатор «Контакт» можно приобрести в любом магазине электротехники. Также возможно использование позвонки из батарейки, лампочки и двух проводов, но лишь при проверке обесточенных цепей. Итак, заряжаем индикатор, чтобы при соприкосновении двух щупов загоралась лампа или был звуковой сигнал, позволяющий убедиться в наличии токопроводящей дорожки. Один щуп ставим на зажим 1, а другой – поочередно на 2, 3, 5, 4, 6. Это необходимо для проверки отсутствия «хомутов», которые, при их наличии, обязательно приведут к межфазному замыканию. Если все нормально, то нужно нажать отверткой на подвижную часть штока (ПМЛ, ПМА) или руками поджать две части пускателя (жабка), то есть имитировать срабатывание. При проверке в таком положении цепь должна быть лишь на линиях 1-2, 3-4 и 5-6.

Если вспомогательные контакты скрыты и не просматриваются, то нужно прозвонить и их, чтобы определить нормальное состояние. Предположим, что при нажатом состоянии показывают цепь пары 31-32 и 41-42, а вот 51-52 и 61-62 звонятся, когда части магнитопровода не сомкнуты. Первые две называются нормально открытыми, то есть не проводят ток без подачи напряжения на катушку. А вторые носят название нормально замкнутых, формируя цепь именно при отключенном положении пускателя.

И, наконец, при помощи прозвонки или индикатора нужно проверить катушку на целостность. Для этого одним щупом следует прикоснуться к А1, а другим - к А2. Сигнальная лампочка должна гореть.

Все вышеописанное должно выполняться без подключенных проводов, и тем более без подачи питания на цепи. Схема магнитного пускателя может проверяться и без выполнения этого условия, но лишь специалистами, которые, по понятной причине, вряд ли будут читать о подключении электромагнитного контактора.

Засучив рукава

Монтажная схема подключения магнитного пускателя зависит от запитываемого через него оборудования. Поэтому в качестве примера мы рассмотрим классический случай, когда нужно включать трехфазный электродвигатель переменного тока с короткозамкнутым ротором.

Берем трехжильный кабель подходящего сечения и одну его сторону подключаем к выводам двигателя. Жилы с другой стороны зачищаем и фиксируем болтовыми соединениями на контактах 2, 4, 6 пускателя. Если из-за особенностей установки удобнее использовать 1, 3, 5, то это разрешается. Далее к зажимам 1, 3, 5 подводим три провода от силового автомата. То есть после нажатия на кнопку выключателя на трех болтах контактора будет присутствовать напряжение 380 В. С любой из нижних губок автомата идет провод на нормально замкнутую кнопку «Стоп» и нормально разомкнутую пусковую, от которой далее линия следует к выводу катушки А1. Схема подключения магнитного пускателя зависит от напряжения, на которое рассчитана катушка. Если на ней указано 220 В, то вывод А2 нужно проводом соединить с «землей». В случае же 380 В вместо земли линию нужно протянуть к одной из двух нижних губок автомата. При проверке индикатором (во включенном состояний) между вышеуказанной губкой и контактом на стоповой кнопке прибора должно быть отображено 380 В.

Как работает такая схема

Вышеуказанная реализация является простейшей, без блокировок, подхватов и сигнализации, однако она полностью работоспособна. Даже стоповая кнопка в данном случае не является обязательной. После включения автомата и нажатия на кнопку «Пуск» произойдет подача напряжения на катушку контактора, она магнитным потоком притянет подвижную часть магнитопровода, и контакты на штоке сработают, пропуская через 1-2, 3-4, 5-6 напряжение на двигатель. Если кнопку отпустить, то катушка «отпадет», и цепь разберется.

Усовершенствование

Не менее интересен магнитный пускатель реверсивный. Физически это устройство представляет собой два однотипных контактора, которые благодаря специальному алгоритму срабатывания способны менять чередование фаз, подающихся на двигатель. В результате меняется направление вращения. Магнитный пускатель реверсивный может быть реализован самостоятельно, путем использования двух устройств (КМ1, КМ2) и внесения изменения в классическую схему. Также существуют готовые заводские решения, которые не только боле компактны, но и содержат в себе механическую защиту от «перехлопа».

Незапланированный режим

Правильная схема подключения реверсивного магнитного пускателя обязательно предполагает использование блокировки. Она необходима для того, чтобы любознательный человек не внес элемент непредсказуемости в работу цепи, одновременно нажав кнопки «Вперед» и «Назад». Подключение реверсивного магнитного пускателя выполняется следующим образом:

- Подключаем один контактор так же, как и нереверсивный.

- Между зажимами 1, 3, 5 обоих устройств ставятся перемычки.

- Отходящие линии перемыкаются как 2-6, 4-4 и 6-2.

- Провод от кнопки управления на катушку КМ1 должен идти через нормально замкнутый контакт КМ2. И наоборот. Так реализуется нулевая защита – электроблокировка от одновременного нажатия двух кнопок включения. В случае наличия механической защиты такое соединение можно не выполнять, хотя и лишним оно не будет.

fb.ru

Как подключить трехфазный электродвигатель через магнитный пускатель? Какой взять пускатель?

Что бы подключить трёхфазный двигатель через магнитный пускатель, необходимо приобрести все необходимые "девайсы" и провода + надо иметь схему.

Нужен сам двигатель (провода от него), магнитный пускатель и так называемый "кнопочный пост" (кнопки "пуск" и "стоп").

Естественно пускатель подбирается под конкретный двигатель.

Сечение провода так же подбирается от мощности двигателя.

Сам магнитный пускатель состоит из двух групп, это силовая и группа управления (сверху, если снять крышку, силовая).

К силовой группе подсоединяем провода идущие от двигателя.

Под зажимы контактов крепим провод на одну фазу, затем на вторую и третью.

Далее, подключаем питающие провода.

Последний провод вставляем в зажим, но не затягиваем его, в этот же зажим крепим провод для питания катушки.

Всё, устанавливаем и крепим крышку пускателя.

Далее тот самый фазный провод сажаем на замыкающий контакт стоповой кнопки.

Затем подключаем провод управления катушки (с противоположной стороны на стоповой кнопке).

Для подключения к кнопке "пуск" нужно уже два провода, делаем скрутку и зажимаем.

Провод с кнопки "пуск" подсоединяется к блокировочным контактом магнитного пускателя.

Затем 2-й провод (с противоположной стороны) от кнопки "пуск" к пускателю.

Устанавливаем перемычку.

Подсоединяем нулевой провод к катушке, на финише будет вот такая "картина", проверяем правильность подключения, включаем двигатель через кнопку "пуск".

Вот это общие моменты.

Но на мой взгляд, перед таким сложным подключением, лучше изучить (понять) принцип работы и двигателя и пускателя и кнопочного поста, абсолютно механически (этот провод сюда, тот туда) можно подключить розетку, или выключатель, но не электродвигатель через пускатель.

www.remotvet.ru

Схема включения трехфазного двигателя через пускатель

Как подключить магнитный пускатель

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз (чаще всего фаза С как менее нагруженная), второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все тир фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Схема подключения пускателя

В основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко как в промышленности, так и в обычном быте, лежит очень простая схема. Плох тот электрик, который ее не знает.

Упрощенный вариант схемы пускателя.

Итак, вся схема, кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке, либо в специальной коробке (ПМЛ).

Кнопки ПУСК и СТОП могут находиться как на передней стороне этого щитка, так вне его (монтируются на месте, где удобно управлять работой), а может быть и там, и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

А теперь о принципе работы. На клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкание его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ необходимо подать на его обмотку напряжение. Кстати, величина его зависит от самой катушки, то есть от того, на какое именно напряжение она рассчитана. Это также зависит от условий и места работы оборудования. Катушки бывают на 380, 220, 110, 36, 24 и 12 В). Данная схема рассчитана на напряжение 220 В, поскольку берётся с одной из имеющихся фаз и нуля.

Схема подключения магнитного пускателя через кнопочный пост.

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи. С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самоподхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска продолжать работу и не отключить магнитный пускатель (называется самоподхватом). Для остановки электродвигателя требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся и работа будет остановлена до следующего запуска Пуска.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузке электродвигателя повышается ток и двигатель резко начинает нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.

Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузке в оборудовании, на котором работает электродвигатель. Хотя и нередко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д.

Подключения пускателя по схеме реверс

Подключения пускателя по схеме реверс.

Вариант приведенной выше схемы пускателя по упрощенному варианту используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования, которое должно работать в двух направлениях (кран-балки, тельферы, лебедки, открывание-закрывание ворот и др.) необходима другая электрическая схема.

Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трехкнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс использоваться пульты и на две кнопки, на участках, где промежутки работы очень короткие. Например, для небольшой лебедки с промежутками работы 3-10 секунд. Для работы этого оборудования вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок-контакты (пм1 и пм2) самоподхвата не задействуются. Пока вы держите кнопку нажатой, оборудование работает, как отпустили кнопку — оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

Подключение пускателя по схеме звезда — треугольник

Подключение пускателя по схеме звезда — треугольник.

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт и высокооборотные

3000 об/мин, иногда 1500 об/мин.

Если двигатель соединен в звезду, то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходится напряжение 380 Вольт. Здесь в действие вступает закон Ома I=U/R: чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду (220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том, что двигатель имеет мощность, которая не зависит от того, подключен он в звезду или в треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники W=I*U.

Мощность равна силе тока, умноженной на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник (380) ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник» таким образом, что, в зависимости от того, каким образом поставить перемычки, получится подключение в звезду или в треугольник. Такая схема обычно нарисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей .

Схема подключения трехфазного двигателя к однофазной сети с реверсом и кнопкой для подключения пускового конденсатора.

Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимание, что провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе. Главное — не перепутать.

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ. Он срабатывает, и на него подается напряжение через блок-контакт. Теперь кнопку можно отпустить. Далее напряжение подается на реле времени РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2, и двигатель запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок-контакт магнитного пускателя КМ2, а оттуда на катушку магнитного пускателя КМ1. И электродвигатель включается в треугольник.

Схема включения нереверсивного пускателя.

Пускатель КМ2 следует также подключать через нормально-замкнутый блок контакт пускателяКМ1 для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

  1. Автоматический выключатель.
  2. Три магнитных пускателя КМ, КМ1, КМ2.
  3. Кнопка пуск — стоп;- Трансформаторы тока ТТ1, ТТ2;- Токовое реле РТ;- Реле времени РВ.
  4. БКМ, БКМ1, БКМ2– блок-контакты своего пускателя.

Схема подключения трехфазного электродвигателя к трехфазной сети

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

  • Подключение звезда и треугольник – в чем разница?

  • Схема подключения электродвигателя на 220В через конденсатор

    Источники: http://stroychik.ru/elektrika/podklyuchenie-magnitnogo-puskatelya, http://fazaa.ru/proizvodstvo/sxema-podklyucheniya-puskatelya.html, http://onlineelektrik.ru/eoborudovanie/edvigateli/sxema-podklyucheniya-trexfaznogo-elektrodvigatelya-k-trexfaznoj-seti.html

  • electricremont.ru

    Схема подключения пускателя - Статьи по электротехнике - Каталог статей

    Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её  работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).

    Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

    Схема пускателя упрощенный вариант

    А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя(ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля). Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт само подхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

    Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется само подхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска Пуска.Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья: Схема пускателя упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни.

    Подключения пускателя по схеме - реверс

    Вариант приведенной выше схемы, используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования которое должно работать в двух направлениях, это кран  - балки, тельферы, лебедки, открывание-закрывание ворот и др. необходима другая электрическая схема. Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трех кнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс, использоваться пульты и на две кнопки, это участки, где промежутки работы очень короткие. Например небольшая лебедка, промежутки работы 3-10 секунд, для работы этого оборудования, вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок контакты  (пм1 и пм2) самоподхвата не задействуются, а именно  пока вы держите кнопку нажатой –  оборудование работает, как отпустили – оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

    Подключения пускателя по схеме – реверс

    Пускатель со схемой звезда – треугольник

    Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

    Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

    Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

    Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

    Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220). В двигателе концы обмоток выведены на «клеммник»  таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник.  Такая схема обычно на рисована на крышке. Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

    Схема звезда – треугольник

     Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

    К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимания, провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе, главное не перепутать.

    Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

    При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ он срабатывает и на него подается напряжение через  блок контакт теперь кнопку можно отпустить. Далее напряжение подается на реле времени РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2 и двигатель запускается в«звезду».

    Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя КМ2, а от туда на катушку магнитного пускателя КМ1. И электродвигатель включается в треугольник. Пускатель КМ2 следует также подключать через  нормально-замкнутый блок контакт пускателяКМ1, для защиты от одновременного включения пускателей.

    Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

    Кнопкой «СТОП» схема отключается.

    Схема состоит: - Автоматический выключатель; - Три магнитных пускателя КМ, КМ1, КМ2; - Кнопка пуск – стоп; - Трансформаторы тока ТТ1, ТТ2; - Токовое реле РТ; - Реле времени РВ; - БКМ, БКМ1, БКМ2– блок контакт своего пускателя.

    fazaa.ru

    elektromehanika.org

    Схема подключения трёхфазного электродвигателя | Kursak.NET

    Схема подключения трёхфазного электродвигателя

    Типовая схема подключения трёхфазного электродвигателя состоит из самого электродвигателя, магнитного пускателя и защиты от сверхтоков (автоматический выключатель – автомат).

    Схемы подключения могут быть разными, в зависимости от магнитного пускателя, точнее от рабочего напряжения   его катушки К – 220 в или 380 в, от наличия теплового реле,  которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает   размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя.

    Схема подключения трёхфазного электродвигателя

    Обозначения: 1 – выключатель автоматический (3х-полюсный автомат), 2 – тепловое реле с размыкающими контактами, 3 – группа контактов магнитного пускателя, 4 – катушка магнитного пускателя (в данном случае рабочее напряжение катушки – 220 в), 5 – блок-контакт нормально разомкнутый, 6 – кнопка "Пуск", 7 – кнопка "Стоп".

    Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки 4 – 220 в; для её питания используется фаза С (можно любую другую) и ноль – N.

    Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С.

    Защита электродвигателей. Схема защиты электродвигателя

    При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки – неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя.  преждевременному выходу его из строя.

    Прежде, чем перейти к способам защиты электродвигателей  стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей:

    · Однофазные и межфазные короткие замыкания – в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания).

    Короткие замыкания – наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

    · Тепловые перегрузки электродвигателя – обычно возникают, когда вращение вала сильно затруднено (выход из строя пошипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка).

    Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других  фаз.

    Результат тепловой перегрузки электродвигателя – перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя.

    Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий.

    Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания.

    Для защиты электродвигателей  от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления – через них подаётся напряжение на катушку магнитного пускателя.

    При возникновении тепловых перегрузок    эти контакты размыкаются, прерывая питание катушки, что приводит к возврату группы силовых контактов в исходное состояние – электродвигатель обесточен.

    Простым и надёжным способом  защиты электродвигателя от пропадания фаз будет добавление в схему его подключения дополнительного магнитного пускателя:

    Включение автоматического выключателя 1 приводит к замыканию цепи питания катушки магнитного пускателя 2 (рабочее напряжение этой катушки должно быть ~380 в) и замыканию силовых контактов 3 этого пускателя, через который (используется только один контакт) подаётся питание катушки магнитного пускателя 4.

    Включением кнопки «Пуск» 6 через кнопку «Стоп» 8 замыкается цепь питания катушки 4 второго магнитного пускателя (её рабочее напряжение может быть как 380 так и 220 в), замыкаются его силовые контакты 5 и на двигатель подаётся напряжение.

    При отпускании кнопки «Пуск» 6 напряжение с силовых контактов 3 пойдет через нормально разомкнутый блок-контакт 7, обеспечивая неразрывность цепи питания катушки магнитного пускателя.

    Как видно из этой схемы защиты электродвигателя, при отсутствии по каким-то причинам одной из фаз напряжение на электродвигатель поступать не будет, что предотвратит его от тепловых перегрузок и преждевременный выход из строя.

    Схемы подключения электродвигателя. Звезда, треугольник, звезда – треугольник

    Существует два основных способа подключения трёхфазных электродвигателей:  подключение звезда  и подключение треугольник.

    При соединении трёхфазного электродвигателя звездой концы его статорных обмоток сводятся вместе, соединяясь в одной точке, а на начала обмоток подаётся питание.

    При соединении трёхфазного электродвигателя треугольником   обмотки статора соединяются последовательно – конец одной обмотки соединён с началом следующей.

    Клеммные колодки электродвигателей и схемы соединения обмоток (рис.2):

    Не вдаваясь в подробности теоретических основ электротехники можно сказать, что электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем   с соединением обмоток в треугольник, однако при соединении обмоток звездой двигатель не способен развить полную мощность. При соединении обмоток треугольником двигатель работает на полную паспортную мощность (примерно в 1,5 раз больше, чем при соединении звездой), но имеет очень большие значения пусковых токов. Поэтому целесообразно (особенно для электродвигателей большой мощности) подключение по схеме звезда – треугольник; запуск осуществляется по схеме звезда, после чего (когда электродвигатель «набрал обороты»), происходит автоматическое переключение на схему треугольник.

    Схема управления:

    Подключение оперативного напряжения  через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя  К3.

    Включение пускателя К3, размыкает контакт К3 в цепи катушки пускателя К2 (блокировка случайного включения) и замыкает  контакт К3, в цепи катушки магнитного пускателя К1 – он  совмещен с контактами реле времени.

    При включении пускателя К1 замыкается контакт К1 в цепи катушки магнитного пускателя  К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

    Отключение пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя  К2. Включение пускателя К2, размыкает контакт К2 в цепи катушки пускателя К3.

    Из рисунка 3 видно, что когда на начала обмоток 1, 2 и 3  через силовые контакты магнитного пускателя К1 подаётся рабочее напряжение, срабатывает магнитный пускатель К3. Его силовые контакты К3 соединяют концы обмоток 4, 5 и 6 – обмотки двигателя соединены звездой.

    Далее срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2 – замыкаются силовые контакты К2 и подаётся напряжение на  концы обмоток электродвигателя 4, 5 и 6. Теперь электродвигатель включен по схеме треугольник.

    Трёхфазный двигатель – в однофазную сеть

    Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены "треугольником" (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

    Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

    На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже –  вместо клеммных колодок, в коробке может располагаться два разделённых  пучка проводов (по три в каждом).

    Эти пучки проводов представляют собой "начала" и "концы" обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме "треугольник" – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

    При включении трёхфазного электродвигателя в однофазную сеть, в схему "треугольник" добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

    В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку "ПУСК", применяемую в цепях управления магнитных пускателей.

    Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

    Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при "разгоне" двигателя.

    Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

    Рассчитать ёмкость рабочего конденсатора можно формулой:

    • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток "треугольник".
    • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток "звезда".

    Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

    С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

    Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

    Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

    Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

    Реверсивная схема подключения электродвигателя – фазировка

    Эта схема довольно часто используется для подключения трехфазного электродвигателя там, где необходимо оперативное управление направлением вращения вала двигателя – например, в гаражных воротах, насосах, различных погрузчиках, кран-балках и т. д.

    Реверсирование двигателя реализуется изменением фазировки его питающего напряжения. Например, если порядок подключения фаз к клеммам трехфазного электродвигателя условно взять как L1, L2 ,L3, то направление вращения вала будет определенным, противоположным, чем при подключении, скажем, с фазировкой L3, L2, L1.

    Особенностью реверсивной схемы подключения является использование в ней двух магнитных пускателей. Причем, их главные силовые контакты соединены между собой таким образом, что при срабатывании катушки одного из пускателей, фазировка питающего напряжения двигателя будет отличаться от фазировки при срабатывании катушки другого.

    В схеме используется два магнитных пускателя. При срабатывании первого пускателя KM1, его силовые контакты притягиваются (обведены зеленым пунктиром) и на обмотки электродвигателя поступает напряжение с фазировкой L1, L2, L3. При срабатывании второго пускателя – КМ2, напряжение на двигатель пойдет через его силовые контакты КМ2 (обведены красным пунктиром) уже будет иметь фазировку L3, L2, L1.

    Как видите, здесь магнитные пускатели подключены по стандартной схеме. Разве, что, в цепь каждой катушки последовательно включен нормально закрытый блок-контакт другого пускателя. Эта мера предотвратит замыкание в случае ошибочного одновременного нажатия обеих кнопок «Пуск».

    Калькуляторы веса: Калькулятор веса сетки и проволоки Калькулятор веса оцинкованного листа Калькулятор веса гвоздей и саморезов Калькулятор веса металлопроката

    Видео

    Статьи по самодельным станкам

    Подключение электродвигателя

    Самодельный фрезер

    Станок рабица своими руками

    Сверлильный станок

    Станки с программным управлением

    Циркулярка своими руками

    Самодельный шлакоблочный станок

    Принцип действия электродвигателя

    Как составить бизнес-план

    kursak.net