Сети с глухозаземленной нейтралью и изолированной. Глухозаземленная нейтраль: принцип действия и особенности эксплуатации. Установки с изолированной и глухозаземленной нейтралью
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

ТЕХНИКА БЕЗОПАСНОСТИ / 12 Однополюсное прикосновение в сетях с изолированной и глухозаземлённой нейтралью. Сети с глухозаземленной нейтралью и изолированной


Изолированная нейтраль. Устройство и работа. Применение

Изолированная нейтраль — в процессе передачи, распределения и потребления электрической энергии применяется симметричная 3-фазная система. Такую симметричность можно достичь, приведя в одинаковое положение линейные и фазные напряжения. Поэтому на всех фазах создается равномерная нагрузка по току, равный фазный сдвиг напряжений и токов.

Но при эксплуатации такой системы часто возникают аварийные режимы, приводящие к различным неисправностям проводников. Вследствие этого возникает нарушение симметричности трехфазной системы. Такие нарушения необходимо быстро устранять. На это оказывает большое влияние быстродействие релейной защиты.

Ее правильное функционирование зависит от нейтралей, которые бывают изолированными или глухозаземленными. Каждая из них имеет свои недостатки и преимущества, и используется в соответствующих условиях работы. От технического состояния релейной защиты зависит ее нормальная эксплуатация.

Устройство

Изолированная нейтраль создает режим, который нашел применение в российских энергосистемах для трансформаторов, а также генераторов. Их нейтральные точки не имеют соединения с контуром заземления. В сетях высокого напряжения (от 6 до 10 кВ) нейтральная точка не обязательна, так как обмотки трансформаторов выполнены по схеме треугольника.

По правилам имеется возможность ограничить режим изолированной нейтрали током емкости. Этот ток возникает при замыкании одной фазы.

Ток замыкания можно компенсировать путем использования дугогасящих реакторов в следующих случаях:

  • Ток более 30 А, напряжение от 3 до 6 кВ.
  • Ток больше 20 А, напряжение 10 кВ.
  • Ток более 15 А, напряжение от 15 до 20 кВ.
  • Ток больше 10 А, напряжение от 3 до 20 кВ, с опорами линий передач электроэнергии.
  • Все сети питания на напряжение 35 кВ.
  • В группе «генератор-трансформатор» при нагрузке 5 А и напряжении на генераторе от 6 до 20 кВ.

Допускается производить компенсацию тока замыкания на заземляющий контур путем замены ее на заземление нейтрали специальным резистором. В таком случае порядок действия релейной защиты изменится. Изолированная нейтраль впервые была заземлена в электрических устройствах с небольшой величиной напряжения.

В отечественных сетях питания изолированная нейтраль применяется:

• В 2-проводных сетях постоянного тока.• В 3-фазных сетях переменного тока до 1 кВ.• В 3-фазных сетях от 6 до 35 киловольт при условии допустимого тока замыкания.• В низковольтных сетях, имеющих защитные устройства в виде разделяющих трансформаторов, защитной изоляции, для создания безопасных условий человека.

Принцип действия

Изолированная нейтраль применяется в схемах сетей питания в случаях соединения вторичных обмоток трансформаторов по схеме треугольника, а также при невозможности отключения питания при аварии. Поэтому точка нейтрали отсутствует.

Замыкание фазы на землю не считается коротким при схеме сети с изолированной нейтралью, так как нет соединения между землей и проводниками сети. Но это не значит, что не будет тока утечки при замыкании.

Это объясняется тем, что изоляция кабеля – это не абсолютный диэлектрик, как и другие изоляторы, которые имеют некую минимальную проводимость. Чем больше длина линии, тем выше ток утечки. Представим жилу кабеля обкладкой конденсатора. Второй обкладкой будет земля. Воздух и изоляция будет диэлектриком между токоведущими частями без напряжения, и кабелем. Емкость такого воображаемого конденсатора будет тем выше, чем длиннее линия передач.

Сеть с изолированной нейтралью представляет собой цепь замещения, учитывая удельную электроемкость сети и сопротивление изоляции. Это изображено на рисунке.

Такие компоненты цепи создают ток утечки. При различных условиях в таких сетях 380 вольт ток утечки незначителен, и составляет несколько миллиампер. Несмотря на это, такое замыкание приводит к аварии сети, хотя сеть еще может некоторое время работать.

Нельзя забывать, что в аналогичных сетях при замыкании 1-фазы на землю значительно повышается напряжение между землей и исправными фазами. Это напряжение приближается к величине 380 вольт (линейное напряжение). Этот факт может привести к удару электрическим током электротехнических работников.

Также, изолированная нейтраль при замыкании одной фазы на землю способствует пробиванию изоляции и появлению замыкания на других фазах, то есть, может возникнуть межфазное замыкание с большими токами. Чтобы обеспечить защиту в такой ситуации, необходимы плавкие вставки или автоматические выключатели.

Двойное замыкание на землю очень опасно для работников, обслуживающих сети. Поэтому, если в сети имеется однофазное замыкание, то такую сеть считают аварийной, так как условия безопасности резко снижаются. Наличие «земли» повышает опасность удара током при касании к элементам под напряжением. Поэтому замыкания даже одной фазы на землю немедленно должны устраняться.

Незначительная величина тока 1-фазного замыкания при изолированной нейтрали является причиной такого фактора, что такое замыкание невозможно отключить предохранителями и автоматами защиты. Поэтому потребуется вспомогательные релейные электроустановки, которые предупредят об аварийном режиме.

Эта система питания требует значительного числа сигнализаций и защитных устройств, а к работникам, которые обслуживают сети, предъявляются высокие квалификационные требования.

Преимущества

Режим изолированной нейтрали обладает достоинством, которое заключается в отсутствии надобности оперативного отключения первого 1-фазного замыкания на землю. В местах неисправности появляется незначительный ток, при условии небольшой емкости тока на заземление.

Такой режим применяется ограниченно, так как имеет несколько серьезных недостатков.

Недостатки
  • Сложное обнаружение неисправностей.
  • Все электроустановки требуется изолировать на линейное напряжение.
  • Если замыкание продолжается длительное время, то существует действительная опасность удара человека электрическим током.
  • При 1-фазных замыканиях не обеспечивается нормальное функционирование релейной защиты, так как величина действительного тока замыкания напрямую зависит от работы сети питания, а именно от числа подключенных веток цепи.
  • Снижается срок службы изоляции из-за постепенного накапливания дефектов вследствие воздействия на нее дуговых перенапряжений в течение длительного времени.
  • Повреждения могут появиться в различных местах из-за пробоя изоляции в других местах, где появляются дуговые перенапряжения. Поэтому многие кабели выходят из строя, так же, как электродвигатели и другие электроустановки.
  • Возможно появление дуговых перенапряжений, дуги незначительного тока в местах 1-фазного замыкания на землю.

В результате можно сказать, что значительное число недостатков превосходит все преимущества этого режима заземления. Но при некоторых условиях такой способ вполне проявляет свою эффективность и не нарушает требований правил электроустановок.

Похожие темы:

 

electrosam.ru

принцип действия и особенности эксплуатации. Установки с изолированной и глухозаземленной нейтралью

Источниками питания потребителей являются генераторы или силовые трансформаторы. Обычно трехфазные обмотки соединяются в звезду. Общая точка этого соединения называется нейтралью. Если она напрямую или через небольшое сопротивление (трансформатор тока) соединяется с контуром заземления непосредственно у источника электроснабжения, то это – глухозаземленная нейтраль.

Работа нейтрали с заземлением – лишь один из возможных режимов ее работы. В зависимости от условий работы сети при однофазных замыканиях на землю, требуемых способов защиты людей от поражения электрическим током, способов ограничения перенапряжений используются и другие режимы:

  • с незаземленной (изолированной) нейтралью;
  • с компенсированной (резонансно-заземленной) нейтралью;
  • с эффективно заземленной нейтралью.

Эти режимы характерны для электроустановок с напряжением 6 кВ и выше. Система с изолированной нейтралью применяется и при напряжении до 1000 В, но не столь широко, как заземленная. Она обеспечивает высокую безопасность при эксплуатации передвижных электроустановок, горных предприятий, где использование контура заземления для обеспечения электробезопасности ненадежно или неэффективно.

Установка в нейтральном проводнике компенсационных установок позволяет уменьшить емкостной ток замыкания на землю электроустановок выше 1000 В. Компенсация осуществляется за счет плавно или ступенчато изменяемой индуктивности катушки. В точке замыкания на землю ток при полной компенсации становится равным нулю. Дополнительно для эффективного срабатывания защиты используется резистивное заземление нейтрали. Она создает активную составляющую тока, на который реагирует реле ячейки, питающей поврежденную линию.

Эффективное заземление нейтрали применяется на линиях электропередач напряжением 110 кВ и выше.

Все бытовые, сельские, дачные электросети питаются от трансформаторных подстанций с глухозаземленной нейтралью. Поэтому рассмотрим особенности ее работы поподробнее.

Конструкция сетей с глухозаземленной нейтралью

Трансформаторы и генераторы, применяемые для этих электроустановок, имеют три фазных силовых вывода и один нейтральный (нулевой). Напряжение между фазными выводами называют линейным, а между любым фазным и нулевым выводом – фазным. Линейное напряжение определяет номинальное напряжение всей электроустановки. Оно может принимать стандартные значения 220 В, 380 В и 660 В. Линейное напряжение в бытовых сетях – 380 В.

Фазное напряжение меньше линейного в √3 раз, что соответствует 127, 220 и 380 В. При линейном 380 В фазное равно 220 В.

Таким образом, сеть 380 В с заземленной нейтралью пригодна для питания трехфазных потребителей на напряжение 380 В и однофазных на напряжение 220 В. Однофазные нагрузки подключаются между фазными и нулевыми проводниками и равномерно распределяются по фазам.

Подстанция, на которой установлен силовой трансформатор, имеет контур заземления: определенным образом соединенные между собой стальные или медные детали, заглубленные в грунт. Геометрические размеры контура заземления рассчитывают так, чтобы они эффективно способствовали растеканию по земле тока однофазного замыкания. Способность заземляющего устройства проводить этот ток количественно оценивается его сопротивлением растеканию. Допустимые значения этого параметра регламентированы ПУЭ. Для трансформаторных подстанций сопротивление контура заземления не должно превышать 4 Ом при номинальном напряжении 380 В.

Выводы от контура заземления на подстанции присоединяются к нулевой шине – металлической полосе распределительного устройства, к которой подключается и проводник от нулевого вывода трансформатора. К этой же шине подключаются соответствующие жилы отходящих кабелей. Фазные жилы подключаются к выводам коммутационных аппаратов: рубильников, автоматических выключателей, контактным площадкам держателей предохранителей.

Кабельные линии, отходящие от подстанции, в

levevg.ru

Режимы работы нейтрали в электроустановках и электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C - combine, S - separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Поделитесь с коллегами и сокурсниками

pomegerim.ru

С изолированной и глухозаземлённой нейтралями

Защитное заземление может быть эф­фективно только в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротивления заземления. Это возможно в сетях с изолированной нейтралью (системы IT) , где при глухом замы­кании на землю или на заземленный корпус, ток не зависит от величины сопротивления заземле­ния, а также в сетях напряжением выше 1000 В с изолированной и заземленной ней­тралью. В последнем случае замыкание на землю является корот­ким замыканием, причем срабатывает максимальная токовая за­щита.

Рассмотрим защитные свойства заземления на примере трёхфазных сетей с системами заземленияTT и IT (рис. 4.7).

а

б

Рис. 4.7. Замыкание фазы на заземлённый корпус в сети с глухозаземлённой нейтралью (а) и в сети с изолированной нейтралью (б).

При замыкании фазы на заземлённый корпус электроустановки, напряжение на нём (Uк)окажется равнымпотенциалу заземлителя (φз) и в любых случаях будет меньше фазного напряжения. Напряжение на заземлённом корпусе определяется током замыкания (Iз), стекающим через заземлитель, и сопротивлением заземлителя (Rз), т.е.

. (4.21)

Величина Iз будет зависеть от режима нейтрали электрической сети (рис. 4.7).

В сети с глухозаземленной нейтралью (система TT) открытые проводящие части заземлены и не соединены с нулевым защитным проводником. Роль нулевого защитного проводника выполняет земля.

При замыкании фазы на корпус по цепи, образовавшейся через землю, будет проходить ток

, (4.22)

где Uф - фазное напряжение сети, В;

Rои Rз – сопротивление заземления нейтрали и корпуса электроустановки соответственно, Ом.

Сопротивления обмоток источника тока (например, трансформатора, питающего данную сеть) и проводов сети малы по сравнению с R0и Rк, поэтому их в расчёт не принимаем.

В результате протекания тока через сопротивление Rз в землю на корпусе возникает напряжение относительно земли Uк, В, равное падению напряжения на сопротивлении Rз:

. (4.23)

Ток Iз может оказаться недостаточным, чтобы вызвать срабатывание максимальной токовой защиты, т.е. повреждённая установка может не отключиться. Например, при Uф = 220 В и Rо= Rз=4 Ом

Iз = 220/(4+4) = 27,5 А.

Если при этом ток срабатывания защиты больше Iз (в рассматриваемом примере больше 27,5 А), то отключения не произойдёт и корпус электроустановки будет находиться под напряжением

Uк=220х4/(4+4)=110 В,

что значительно больше допустимого значения напряжения прикосновения.

В сети с изолированной нейтралью (система IT), при замыкании фазы на корпус, ток замыкания определится из выражения:

, (4.24)

где r – сопротивление изоляции фазного проводника, Ом.

Поскольку сопротивление заземления нейтрали Rо много меньше сопротивления изоляции r, то ток Iз, а следовательно, и напряжение на корпусе в сети с глухозаземлённой нейтралью будет намного больше, чем в сети с изолированной нейтралью. Кроме того, напряжение на корпусе будет зависеть от соотношения между сопротивлением Rои Rз. Например, при уменьшении Rоотносительно Rз напряжение на корпусе, согласно формулам (4.21) и (4.22) возрастает. Ввиду указанных недостатков заземление как основная мера защиты в сетях с глухозаземлённой нейтралью напряжением до 1000 В не применяется.

Поэтому, если в сети с изолированной нейтралью для обеспечения безопасности часто достаточно заземлить корпуса электроустановок и обеспечить высокое сопротивление изоляции, то в сети с глухозаземлённой нейтралью следует обеспечить автоматическое отключение повреждённой электроустановки от сети. Для системы TN такое отключение достигается применением защитного зануления и устройств защитного отключения, для системы TT – обязательным применением устройств защитного отключения.

В сети с изолированной нейтралью ток замыкания на землю практически не увеличивается с уменьшением сопротивления заземлителя, поскольку r>> Rз. Поэтому в таких сетях защитное заземление используется как основная мера защиты.

 

Экспериментальная часть

 



infopedia.su

ТЕХНИКА БЕЗОПАСНОСТИ / 12 Однополюсное прикосновение в сетях с изолированной и глухозаземлённой нейтралью

Однополюсное прикосновение в сетях с изолированной и глухозаземлённой нейтралью

Ток, протекающий через тело человека, зависит от значения напряжения, схема включения человека, режима нейтрали, сопротивления и емкости электрической сети относительно земли.

Однополюсным называется прикосновение к одному полюсу. В электроустановках переменного тока прикосновение называют однофазным.

Рисунок 1 - Однополюсное прикосновение в сети с заземлённой нейтралью

В сети с заземленной нетралью в цепи тока, проходящего через тело человека, последовательно с сопротивлением человека Rч включены сопротивление обувиRоб, сопротивление полаRп и сопротивление нейтралиRо.

С учетом всех этих сопротивлений можно определить ток, протекающий через тело человека

Если человек имеет на ногах токонепровдящую обувь и стоит на изолирующем основании, то принимая Rч=1000 Ом, Roб=50000 Ом, Rп=60000 Ом, Ro=10 Ом, получим

Такой ток безопасен для человека. В действительности сухие деревянные полы, резиновые коврики и обувь обладают значительно большими сопротивлениями по сравнению с принятыми нами, т.е. ток Iчз, протекающий через тело человека будет еще меньше.

Рассмотрим неблагоприятный случай, когда человек прикоснувшись к фазному проводу, имеет на ногах токопроводящую обувь и стоит непосредственно на сырой земле или токопроводящем полу (заземленная металлоконструкция, металлический пол и т.д.). Так как сопротивление нейтрали не превышает 10 Ом, то им можно пренебречь. Значение тока Iпз будет определятьсяпо формуле

Такой ток смертельно опасен для человека.

В сети с изолированной нейтралью ток, протекающий через тело человека, возвращается к источнику тока через изоляцию проводов, которая обладает большим сопротивлением.

Рисунок 2 – Однополюсное прикосновение в сети с изолированной нейтралью

Значение тока протекающего через тело человека, определяется по формуле

, А

Ёмкостные составляющие тока малы и его можно пренебречь

Если принять =50 000 Ом,= 60 000 Ом,= 90 000, то

= 1,5 мА

Такой ток безопасен для человека.

В худшем случае, когда человек имеет проводящую обувь() и стоит на токоведущем полу=0) токопределяется по формуле

== 7 мА

Этот ток значительно меньше для аналогичного случая в сети с заземлённой нейтралью.

Выводы: 1) В сети с изолированной нейтралью условия безопасности зависят не только от сопротивления пола и обуви), но и от сопротивления изоляции проводов относительно земли. 2) Чем лучше изоляция , тем меньше ток, протекающий через тело человека. 3) В сети с заземлённой нейтралью, сопротивление изоляциине имеет значения. 4) При прочих равных условиях однополюсное прикосновение в сети с изолированной нейтралью менее опасно, чем в сети с заземлённой нейтралью.

В случае аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии напряжение между фазой и землёй в сети с изолированной нейтралью может возрасти с фазного (220В) до линейного(380 В) . В сети с заземлённой нейтралью в аналогичной ситуации повышение напряжения может быть незначительным.

В сетях напряжением выше 1000 В в следствии большой их протяжённости, а следовательно, ,большой ёмкостной проводимости между фазами и землёй опасность однополюсного и двухполюсного прикосновения одинакова и не зависит от режима нейтрали. Любое прикосновения является очень опасным , так как ток, протекающий через тело человека, достигает очень больших значений.

studfiles.net

Трехфазная сеть, изолированная от земли, четырехпроводная трехфазная сеть с глухозаземленной нейтралью

На рис 182, в соответствии с указанным выше, приведена принципиальная схема трехфазной сети, изолированной от земли. На схеме для наглядности сопротивления изоляции фаз относительно земли показаны сосредоточенными. Сеть п подключена к вторичной обмотке трансформатора питания -. Т-. Тр.

При прикосновении человека к фазному проводу 1 возникает сеть тока замыкания на землю Основные элементы сети:"фазный провод 1"-"человек параллельно с сопротивлением изоляции этого провода относительно земли. Ги"-"земля"-"сопротивления изоляции проводов 2 и "опори ізоляції проводів 2 і. З

относительно земли г2 и г3"- фазные провода 2 и 3. Как видно из рис 182, в сети приложена линейное напряжение (Ш =] с. ИИФ), и замыкается эта сеть через сопротивления изоляции фаз относительно земли - г2 и г3

Рис 182. Принципиальная схема трехфазной сети, изолированной от земли

Поскольку сопротивление человека (И?. А) при анализе опасности поражения электрическим током принимается равным 103. Ом, а сопротивление изоляции согласно. ПУЭ должно быть не менее 105. Ом (ИКОМ на вольт напряжения), то величины ина тока через человека в сети замыкания на землю, рассматривается, определяется практически опорами изоляции г2 е гг фаз относительно земли. При повреждении г2 и г3 величина тока в сети замыкания на землю, в том числе и тока через человека, может вырасти на 2 порядка, что значительно увеличивает опасность поражения человека электрическим током. Поэтому в сетях, изолированных от земли, с целью предупреждения подобных их ситуаций и согласно требованиям электробезопасности, обязательным является постоянный контроль сопротивления изоляции"на сигнал", а в условиях повышенной опасности электротравм -"на отключениеt;на відключення".

Одним из возможных вариантов в изолированной от земли сети при прикосновении человека к проводу 1 является пробой изоляции этого провода и замыкания его на землю (стрелка а33п пунктиром на рис 182). В этом випа адку в сети замыкания на землю параллельно человеку появится дополнительный токопровод"33 * а ток замыкания на землю распределится между человеком и пробоем на землю обратно пропорционально их сопротивлениям. Поэтому к касания человека к проводу с поврежденной изоляцией (с пробоем на землю) более безопасным, чем прикосновение к этому провода при отсутствии его замыкания на землю. На этом принципе возможна реализация методов защиты человека - при ее прикосновении к токоведущим частям, последние автоматически средствами защиты замыкаются на земля на землю.

четырехпроводная трехфазная сеть с глухозаземленной нейтралью

Принципиальная схема трехфазной четырехпроводной сети с глухо-заземленной нейтралью приведена на рис 183

Рис 183. Схема трехфазной четырехпроводной сети с глухозаземленной нейтралью

В такой сети нейтраль трансформатора питания заземлена через г0"- сопротивления человека. При прикосновении человека, стоящего на земле, до фазного провода 1 образуется сеть тока:"провод Iя-"человек"-"з земля"- г0-"фаза 1"В этой сети указанные элементы соединены последовательно, а наибольшее сопротивление имеет элемент"человек"- 103. Ом. Сопротивление других элементов прохождению тока находится в пределах 10. Ом в сравнение и с сетью, изолированной от земли, в данном случае, в сети тока через человека отсутствует сопротивление изоляции, который, согласно требованиям безопасности, составляет менее 105. Взгідно з вимогами безпеки, становить щонайменше 105. Ом.

Поэтому величина тока через человека при ее прикосновении к неизолированным токоведущим частям (фазного провода), находящихся под напряжением, в сетях с глухозаземленной нейтралью должно быть на два порядка больше, чем в сетях, изолированных от земли при нормальном состоянии изоляции и близким к величине тока через человека в сети, изолированной от земли, при наличии в ней фаз с поврежденной изоляцией ю, к которым не прикасается человек.

Таким образом, сети с глухозаземленной нейтралью при прикосновении человека к неизолированным токоведущим частям более опасными по тяжести электротравм, чем сети, изолированные от земли. Несмотря на ц это, раз сети с глухозаземленной нейтралью применяются на производстве и в быту. И только в горнодобывающей промышленности и на торфоразработках, согласно требованиям электробезопасности, обязательно применения сетей, изолированных от земллі.

Такой подход к выбору режима нейтрали электрической сети обусловлен, в основном, следующими обстоятельствами:

- в условиях производственных предприятий, общественных учреждений, жилого сектора и т др. обеспечения требуемого сопротивления изоляции при применении сетей, изолированных от земли, связано с определенными техническими и и экономическими проблемамии;

- в сетях с глухозаземленной нейтралью возможно обеспечить более эффективную защиту при повреждении изоляции и переходе напряжения на нетоковедущие части электроустановок, более подробно будет рас вянут в 1810.

Таким образом, согласно указанным выше, к основным факторам, которые влияют на тяжесть поражения электрическим током (на / д) при попадании человека под напряжение, можно отнести:

- величину напряжения питания,. В;

- величину напряжения прикосновения (И / дот"В), под которую попадает человек;

- конструктивные особенности сети питания - количество фаз и режим нейтрали;

- величину сопротивления и состояние изоляции - прежде всего в сетях питания, изолированных от земли;

- протяженность и разветвленность сети питания, влияющих на. Га и емкость относительно земли

Влияние перечисленных факторов и особенностей производственной среды эксплуатации электроустановок опасности электротравм учитывается при разработке нормативных актов по вопросам электробезопасности, техничес их и организационных мер предупреждения электротравм и электрозащитных средстве.

uchebnikirus.com

Свойства сетей с глухо заземленной нейтралью и с эффективно заземленной нейтралью

С глухозаземленной нейтралью работают электрические сети напряжением 220 кВ и выше Сети напряжением 110 кВ работают с эффективно зазем­ленной нейтралью.

Рассмотрим свойства таких сетей.

В сетях напряжением 220 кВ и выше заземляют нейтрали всех трансформаторов (рисунок 7.4). Разъединители в цепи нейтралей трансформаторов класса 220 кВ и выше не устанавливаются

 

Рисунок 7.4 – Сеть с глухо заземлёнными нейтралями

 

В нормальном режиме работы заземление нейтрали на работу сети не влияет. Влияние режима заземления нейтрали проявляется только при замыканиях на землю.

Рассмотрим однофазное короткое замыкание на землю в точке К. Заземленная нейтраль, линия и место замыкания на землю образуют замкнутый контур через землю. При заземлении нейтралей двух трансформаторов, как это показано на рисунке 7,4, будет два замкнутых контура через землю, в которых протекают токи КЗ Iк1 и Iк2. В месте КЗ токи всех контуров суммируются и через место замыкания протекает суммарный ток КЗ. Величина тока КЗ определяется величиной эквивалентного сопротивления схемы замещения относительно точки КЗ. При этом суммарный ток в месте однофазного КЗ в комплексной форме определяется по выражению:

(7.1)

где Z1Σ, Z0Σ, - эквивалентные (суммарные) сопротивления, прямой и нулевой последовательности; UФ – фазное напряжение.

Ток при трехфазном коротком замыкании.

. (7.2)

 

Эквивалентные сопротивления прямой и нулевой последовательности в сетях 110 кВ и выше могут быть соизмеримы по величине. При этом токи однофазного короткого замыкания могут быть близки по величине к токам трехфазного короткого замыкания. Поэтому сети 110 кВ и выше называют сетями с большими токами замыкания на землю. Большие токи при КЗ на землю – это главное свойство сетей с глухо заземленными и эффективно заземленными нейтралями.

Это и преимущество, и недостаток таких сетей. Преимущество: при большом токе короткого замыкания можно сравнительно просто выявить поврежденную линию, сравнительно просто определить место КЗ и быстро отключить (изолировать) поврежденный элемент.

Недостаток: при большом токе короткого замыкания усложняется работа оборудования. Повышаются требования к термической и динамической стойкости.

Сети 110 кВ и сети напряжением 220 кВ и выше имеют одно важное отличие: воздушные линии напряжением 220 кВ и выше выполняются без ответвлений и не имеют промежуточных отборов мощности. Воздушные линии 110 кВ, в отличие от линий напряжением 220 кВ и выше, имеют многочисленные ответвления к подстанциям промышленных предприятий. При этом от ВЛ-110 кВ через ответвительные подстанции (ПС-3 на рисунке 7.5) получают питание потребители, территориально удаленные от узловых подстанций энергосистемы (ПС-1 и ПС-2 на рисунке 7.5). К одной ВЛ-110 кВ может быть подключено до пяти ответвительных подстанций.

Рисунок 7.5 – Сеть с эффективно заземленной нейтралью

 

При этом число трансформаторов в сети 110 кВ может быть в несколько раз больше, чем в сетях напряжением 220 кВ и выше. Если в сети 110 кВ нейтрали всех трансформаторов заземлить, то при однофазном КЗ на землю будет несколько контуров для токов КЗ. Это приведет к резкому снижению эквивалентного сопротивления нулевой последовательности Z0Σ. Если сопротивление нулевой последовательности снизится до сопротивления прямой последовательности и будет выполнено равенство Z1Σ = Z0Σ, то, в соответствии с (7.1) и (7.2), ток однофазного короткого замыкания будет равен току трехфазного короткого замыкания. Если сопротивление нулевой последовательности станет меньше сопротивления прямой последовательности Z0Σ <Z1Σ, то ток однофазного короткого замыкания в соответствии с (7.1) и (7.2) станет больше тока трехфазного короткого замыкания: Это опасно для термической и динамической стойкости сети и этого стараются не допускать. Для того, чтобы ток однофазного короткого замыкания не превышал тока трехфазного короткого замыкания, у части трансформаторов (Т3 и Т4 на рисунке 7.5) нейтрали разземляют. При этом уменьшается число параллельных контуров и увеличивается эквивалентное сопротивление Z0Σ. Для возможности разземления нейтрали в цепи нейтралей устанавливаются разъединители QS. Сети, в которых часть нейтралей изолированы от земли, а часть заземлены, называют сети с эффективно заземленной нейтралью (это допускается только в сетях 110 кВ).

Разземляют, обычно, нейтрали на ответвительных подстанциях, то есть на ГПП. Принимать решение о разземлении нейтрали на той или иной ГПП могут только диспетчеры районной энергосистемы. Число трансформаторов, нейтрали которых следует разземлить, определяется расчетом.

На рисунке 7.5 приведены векторные диаграммы напряжений в точке однофазного КЗ.

Рисунок 7.6 – Векторные диаграммы напряжений в точке КЗ

 

На рисунке 7.5, а показаны векторы фазных напряжений UА, UВ и UС по отношению к нейтрали трансформатора N. В нормальном режиме потенциал нейтрали по отношению к земле равен нулю. При КЗ на землю фаза А через землю от точки З земли (рисунок 7.4) к нейтрали трансформатора потечет ток КЗ Iк, который отстает от напряжения фазы на угол φ. От тока КЗ в сопротивлении земли между точкой в земле Зв месте замыкания и заземленной нейтралью N появится падение напряжения UЗN. При этом фазные напряжения UВЗ и UСЗ неповрежденных фаз В и С по отношению к земле будут отличаться от фазных напряжений по отношению к нейтрали: UВЗ не равно UВ и UСЗ не равно UС.

Отношение разности потенциалов между неповрежденной фазой и землей при ЗНЗ к разности потенциалов между фазой и землей в этой точке до замыканияназывается коэффициентом замыкания (ПУЭ п.1.2.4). Для электрической сети с эффективно заземленной нейтралью коэффициент замыкания на землю не должен превышать 1,4 (kз ≤ 1,4). Число трансформаторов с разземленной нейтралью выбирается так, чтобы выполнялось условие:

 

. (7.2)

 

Если разъединитель в нейтрали отключен, то при однофазном КЗ на изолированной от земли нейтрали может появиться фазное напряжение. В нормальном режиме напряжение на нейтрали трансформатора по отношению к земле равно нулю. Поэтому для удешевления трансформатора изоляция нейтралей трансформаторов класса 110 кВ выполняется обычно ослабленной. Фазное напряжение на нейтрали п отношению к земле для ослабленной изоляции нейтрали является опасным и может вызвать ее пробой. Схемы защиты нейтрали трансформаторов от перенапряжений приведены на рисунке 7.7. В качестве защитных средств FV применяются разрядники (рисунок 7.7, а) или ограничители перенапряжений (рисунок 7.7, б). Для возможности заземления нейтрали (при необходимости) параллельно разряднику устанавливаются разъединитель QS. Номинальное напряжение разрядника выбирается на класс ниже номинального напряжения сети. Например, если сеть напряжением 110 кВ, то разрядник устанавливают на 55 кВ. Для этого включают последовательно два разрядника на 20 и 35 кВ.

Рисунок 7.7 – Схемы защиты нейтрали трансформатора

 

 



infopedia.su