Проверка мультиметром радиодеталей. Методы проверки стабилитрона мультиметром и тестером. Как прозванивать мультиметром микросхему
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Как проверить радиодетали невыпаивая их с платы? Проверка мультиметром радиодеталей. Проверка мультиметром радиодеталей


Как проверить радиодетали невыпаивая их с платы? Проверка мультиметром радиодеталей

Проверка радиодеталей

 Резисторы

Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной схеме. При проверке подстроечных и переменных резисторов сначала надо проверить величину сопротивления, замерив его между крайними (по схеме) выводами, а затем убедиться в надежности контакта между токопроводящим слоем и ползунком. Для этого надо подключить омметр к среднему выводу и поочередно к каждому из крайних выводов. При вращении оси резистора в крайние положения, изменение сопротивления переменного резистора группы «А» (линейная зависимость от угла поворота оси или положения движка) будет плавным, а резистора группы «Б» или «В» (логарифмическая зависимость) имеет нелинейный характер. Для переменных (подстроечных) резисторов характерны три неисправности: нарушения контакта движка с проводящим слоем; механический износ проводящего слоя с частичным нарушением контакта и изменением величины сопротивления резистора в большую сторону; выгорание проводящего слоя, как правило, у одного из крайних выводов. Некоторые переменные резисторы имеют сдвоенную конструкцию. В этом случае каждый резистор проверяется отдельно. Переменные резисторы, применяемые в регуляторах громкости, иногда имеют отводы от проводящего слоя, предназначенные для подключения цепей тонконпенсации. Для проверки наличия контакта отвода с проводящим слоем омметр подключают к отводу и любому из крайних выводов. Если прибор покажет какую-то часть от общего сопротивления, значит имеется контакт отвода с проводящим слоем.Фоторезисторы проверяются аналогично обычным резисторам, но для них будет два значения сопротивления. Одно до засветки — темновое сопротивление (указывается в справочниках), второе — при засветке любой лампой (оно будет в 10... 150 раз меньше темнового сопротивления).

Конденсаторы

Простейший способ проверки исправности конденсатора - внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита. Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.

 При отсутствии измерителя емкости конденсатор можно проверить другими способами.Конденсаторы большой емкости (1 мкФ и выше) проверяют омметром. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор устанавливают для измерения больших сопротивлений. Электролитические конденсаторы подключают к щупам с соблюдением полярности.Если емкость конденсатора больше 1 мкФ и он исправен, то после присоединения омметра конденсатор заряжается, и стрелка прибора быстро отклоняется в сторону нуля (причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания), потом стрелка медленно возвращается в положение «бесконечность».

При наличии утечки омметр показывает малое сопротивление - сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.Конденсаторы средней емкости (от 500 пФ до 1 мкФ) можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замы

les66.ru

Методы проверки стабилитрона мультиметром и тестером. Как прозванивать мультиметром микросхему

Как прозвонить плату мультиметром и проверить материнку тестером

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными. Приведем правила проверки некоторых элементов, в том числе и материнской платы.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления. При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Диод

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом. Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции. На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны. При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci. Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить. Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования. На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку. Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться. Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.

Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.

evosnab.ru

Проверка радиодеталей мультиметром

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!Приветствую вас на сайте “Радиолюбитель“

Проверка радиодеталей мультиметром

Проверка деталей аналоговым мультиметром.

Без измерительного прибора Вам не обойтись, т.к. придется проверять сопротивление резисторов, напряжения и тока в разных цепях конструкций. Измерительный прибор, в народе – омметр, авометр (ампер-вольт-омметр) , тестер или мультиметр (от английского multimeter – измерительный прибор, объединяющий в себе несколько функций) – должен иметь каждый. Сейчас большой популярностью пользуются цифровые приборы. Они многофункциональные и сравнительно не дорогие . Ранее в качестве измерительного прибора широко пользовались аналоговыми тестерами со стрелочным индикатором (см. Рис. 1).

Не все начинающие знают, что омметром можно проверять почти все радиоэлементы : резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью, и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполняются в логарифмическом масштабе, края шкалы получаются сжатыми. Поэтому наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.Омметр производит измерение сопротивления, подклю

xn----7sbeb3bupph.xn--p1ai

Проверка радиодеталей - Проверка радиодеталей - Начинающему радиолюбителю - Каталог статей

Резисторы

Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной схеме. При проверке подстроечных и переменных резисторов сначала надо проверить величину сопротивления, замерив его между крайними (по схеме) выводами, а затем убедиться в надежности контакта между токопроводящим слоем и ползунком. Для этого надо подключить омметр к среднему выводу и поочередно к каждому из крайних выводов. При вращении оси резистора в крайние положения, изменение сопротивления переменного резистора группы «А» (линейная зависимость от угла поворота оси или положения движка) будет плавным, а резистора группы «Б» или «В» (логарифмическая зависимость) имеет нелинейный характер. Для переменных (подстроечных) резисторов характерны три неисправности: нарушения контакта движка с проводящим слоем; механический износ проводящего слоя с частичным нарушением контакта и изменением величины сопротивления резистора в большую сторону; выгорание проводящего слоя, как правило, у одного из крайних выводов. Некоторые переменные резисторы имеют сдвоенную конструкцию. В этом случае каждый резистор проверяется отдельно. Переменные резисторы, применяемые в регуляторах громкости, иногда имеют отводы от проводящего слоя, предназначенные для подключения цепей тонконпенсации. Для проверки наличия контакта отвода с проводящим слоем омметр подключают к отводу и любому из крайних выводов. Если прибор покажет какую-то часть от общего сопротивления, значит имеется контакт отвода с проводящим слоем.     Фоторезисторы проверяются аналогично обычным резисторам, но для них будет два значения сопротивления. Одно до засветки — темновое сопротивление (указывается в справочниках), второе — при засветке любой лампой (оно будет в 10... 150 раз меньше темнового сопротивления).

Конденсаторы

Простейший способ проверки исправности конденсатора - внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки  и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита. Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.

При отсутствии измерителя емкости конденсатор можно проверить другими способами.Конденсаторы большой емкости (1 мкФ и выше) проверяют омметром. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор устанавливают для измерения больших сопротивлений. Электролитические конденсаторы подключают к щупам с соблюдением полярности.Если емкость конденсатора больше 1 мкФ и он исправен, то после присоединения омметра конденсатор заряжается, и стрелка прибора быстро отклоняется в сторону нуля (причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания), потом стрелка медленно возвращается в положение «бесконечность».

 

При наличии утечки омметр показывает малое сопротивление - сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.Конденсаторы средней емкости (от 500 пФ до 1 мкФ)  можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Трансформаторы, катушки индуктивности и дроссели

Проверка начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.     Наиболее частая причина выхода из строя трансформаторов (и дросселей) — их пробой или короткое замыкание витков в обмотке или обрыв выводов. Обрыв цепи катушки или наличие замыканий между изолированными по схеме обмотками можно обнаружить при помощи любого тестера. Но если катушка имеет большую индуктивность (т. е. состоит из большого числа витков), то цифровой мультиметр в режиме омметра вас может обмануть (показать бесконечно большое сопротивление, когда цепь все же есть) — для таких измерений «цифровик» не предназначен. В этом случае надежнее аналоговый стрелочный омметр.    Если проверяемая цепь есть, это еще не значит, что все в норме. Убедиться в том, что внутри обмотки нет коротких замыканий между слоями, приводящих к перегреву трансформатора, можно по значению индуктивности, сравнив ее с аналогичным изделием.     Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи. От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

 

 

 

 

 

      Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Находим резонансную частоту по максимуму напряжения во вторичной цепи. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке:- сетевые питающие    40...60 Гц;- звуковые разделительные     10...20000Гц;- для импульсного блока питания и разделительные .. 13... 100 кГц.          Импульсные трансформаторы обычно содержат малое число витков. При самостоятельном изготовлении убедиться в их работоспособности можно путем контроля коэффициента трансформации обмоток. Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах). Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации.

Диоды и фотодиоды

    Любой стрелочный (аналоговый) омметр позволяет проверить прохождение тока через диод (или фотодиод) в прямом направлении — когда «+» тестера приложен к аноду диода. Обратное включение исправного диода эквивалентно разрыву цепи.     Цифровым прибором в режиме омметра проверить переход не удастся. Поэтому у большинства современных цифровых мультиметров есть специальный режим проверки p-n-переходов (на переключателе режимов он отмечен знаком диода). Такие переходы есть не только у диодов, но и фотодиодов, светодиодов, а также транзисторов. В этом режиме «цифровик» работает как источник стабильного тока величиной 1 мА (такой ток проходит через контролируемую цепь) —- что совершенно безопасно. При подключенном контролируемом элементе прибор показывает напряжение на открытом p-n-переходе в милливольтах: для германиевых 200...300 мВ, а для кремниевых 550...700 мВ. Измеренное значение может быть не более 2000 мВ.Однако, если напряжение на щупах мультиметра ниже отпирания диода, диодного или селенового столба, то прямое сопротивление измерить невозможно.
   

Биполярные транзисторы

     Некоторые тестеры имеют встроенные измерители коэффициента усиления маломощных транзисторов. Если у вас такого прибора нет, то при помощи обычного тестера в режиме омметра или же цифровым, в режиме проверки диодов, можно проверить исправность транзисторов. Проверка биполярных транзисторов основана на том, что они  имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор исправен, если исправны оба перехода.

 

 

 

 

 

 

 

 

 

Для проверки один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно прикасаются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.

 

При прозвонке электродов некоторых цифровых или мощных транзисторов следует учитывать, что у них могут внутри быть установлены защитные диоды между эмиттером и коллектором, а также встроенные резисторы в цепи базы или между базой и эмиттером. Не зная этого, элемент по ошибке можно принять за неисправный.

Полевые транзисторы

     В отличие от биполярных, полевых транзисторов существует много видов и при проверке надо учитывать, с каким из них вы имеете дело. Так, для проверки транзисторов, имеющих затвор на основе запорного слоя p-n-перехода, можно воспользоваться эквивалентной схемой, приведенной на рисунке

 

 

 

 

 

 

 

 

    Для прозвонки подойдет обычный стрелочный омметр, но, цифровым прибором в режиме контроля р-п-переходов делать это более удобно..Сопротивление между стоком и истоком, в обоих направлениях должно иметь небольшую величину и быть примерно одинаковым. Затем замерим прямое и обратное сопротивление перехода, подключая щупы омметра к затвору  и стоку (или истоку). При исправном транзисторе оно должно быть разным и в прямом и обратном направлениях.    При проверке сопротивления между истоком и стоком только не забудьте снять заряд с затвора после предыдущих измерений (кратковременно замкните его с истоком), а то можно получить неповторяющийся результат     Многие маломощные «полевики» (особенно с изолированным затвором) очень чувствительны к статике. Поэтому, перед тем как брать в руки такой транзистор, позаботьтесь о том, чтобы на вашем теле не оказалось зарядов. Чтобы их снять, достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.     Несмотря на то, что мощные полевые транзисторы часто имеют защиту от статики, но все равно пренебрегать мерами предосторожности не следует.     Многочисленный класс MOSFET-транзисторов (предназначен для работы в ключевом режиме) не имеет p-n-переходов между электродами (изолированный затвор). Из-за большого сопротивления диэлектрического слоя у затвора, если транзистор явно не пробит (для выявления этого прозвонка все же не помешает), убедиться в его работоспособности не удастся — прибор покажет бесконечно большое сопротивление.

radiofokus.ucoz.ua