Простой электронный терморегулятор до 300 градусов своими руками. Простой электронный термостат для холодильника на LM35. Схема и описание
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

                                Простые терморегуляторы. Простой электронный терморегулятор до 300 градусов своими руками


Простой терморегулятор своими руками

Необычное применение регулируемого стабилитрона TL431. Простой терморегулятор. Описание и схема

Всем, кто когда ни будь занимался ремонтов современных блоков питания компьютеров или различных зарядных устройств – для сотовых телефонов, для зарядки «пальчиковых» аккумуляторов типоразмера ААА и АА хорошо известна маленькая деталька TL431. Это так называемый регулируемый стабилитрон (отечественный аналог КР142ЕН19А). Вот уж тут воистину можно сказать: «Мал золотник, да дорог».

Логика работы стабилитрона такова: когда на управляющем электроде напряжение превышает 2,5 В (задается внутренним опорным напряжением) стабилитрон, по сути дела являющийся микросхемой, открыт.

В этом состоянии через него и нагрузку протекает ток. Если же это напряжение становится чуть меньше указанного порога, стабилитрон закрывается и отключает нагрузку.

При работе такого стабилитрона в источниках питания в качестве нагрузки чаще всего используется излучающий светодиод оптрона, управляющего силовым транзистором.

Это в тех случаях, когда необходима гальваническая развязка первичной и вторичной цепей. Если такой развязки не требуется, то стабилитрон может управлять непосредственно силовым транзистором.

Выходная мощность стабилитрона-микросхемы такова, что с его помощью, возможно управлять маломощным реле. Именно это позволило применить его в конструкции терморегулятора.

В предлагаемой конструкции стабилитрон используется в качестве компаратора. При этом у него только один вход: второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри данной микросхемы.

Такое решение позволяет предельно упростить конструкцию и уменьшить количество деталей. Теперь, как в описании любой конструкции следует сказать несколько слов о деталях и собственно о принципе работы данного терморегулятора.

Схема простого треморегулятора

Напряжение на управляющем электроде 1 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается. Когда на выводе 1 напряжение выше 2,5В микросхема открыта, реле включено.

Контакты реле включают симистор D2, который включает нагрузку. С повышением температуры сопротивление терморезистора падает, за счет чего напряжение на выводе 1 становится ниже 2,5В – реле отключается, отключается нагрузка.

С помощью переменного резистора R1 производится настройка температуры срабатывания терморегулятора.

Датчик температуры должен быть расположен в зоне измерения температуры: если это, например, электрокотел, то датчик должен быть закреплен на трубе, выходящей из котла.

Включение симистора с помощью реле обеспечивает гальваническую развязку терморезистора от сети.

Терморезистор типа КМТ, ММТ, СТ1. В качестве реле возможно применение РЭС-55А с обмоткой на 10…12В. Симистор КУ208Г позволяет включить нагрузку до 1,5КВт. Если нагрузка не более 200Вт симистор может работать без применения радиатора.

Борис Аладышкин

elektruk.elektruk.info

Простой термостат (схема) — Сделай сам своими руками

Сейчас в литературе есть множество описаний термостатов и терморегуляторов на микросхемах, логических микросхемах, микроконтроллерах. Но бывает необходимость и в предельно простых схемах, по которым можно сделать термостат практически из того что есть дома, и в самый короткий срок.Описываемый здесь термостат можно использовать для поддержания температуры устанавливаемой в довольно широких пределах. Его можно использовать дня поддержания положительной температуры зимой в овощехранилищах, или в сауне, или для поддержания комфортной температуры в жилом помещении. Все зависит от величины сопротивления резистора R3 которое, устанавливают при налаживали (пределы от нуля до 2 Мегаом).Сопротивление R3+R2 вместе с сопротивлением терморезистора R1 образует делитель напряжения на базе транзистора VT1. Схема на транзисторах VT1 и VT2 образует триггер Шмитта, а база VT1 является его входом. Когда температура ниже установленной величины, которую нужно поддерживать, сопротивление R1 велико, и ток базы транзистора VT1 низок на столько что он закрывается. Напряжение на его коллекторе при этом растет и приводит к открыванию транзистора VT2 В результате симистор VS1 открывается и включает питание нагревателя. А за счет тока через транзистор VT2 напряжение на эмиттере VT1 немного увеличивается, что фиксирует триггер а таком состоянии, создавая гистерезис.

Когда температура повышается вследствие работы нагревателя сопротивление R1 уменьшается и ток базы VT1 растет. В некий закрывается и нагреватель выключается. Далее все повторяется снова и снова. Температура поддерживается периодическим включением и выключением нагревателя.Питается схема транзисторного термореле от бестрансформаторного источника. Сетевое напряжение на него поступает через конденсатор СЗ, реактивное сопротивление которого берет на себя большую часть сетевого напряжения. Затем идет выпрямитель на диодах VD2-VD3 и стабилитрон VD1. Практически получается параметрический стабилизатор из этого стабилитрона и реактивного сопротивления СЗ. Пульсации сглаживает конденсатор С2.В схеме используются постоянные резисторы типа МЛТ 0,125 .Терморезистор КМТ-4 с отрицательным законом и номинальным сопротивлением 220 К (при температуре 25°С). Можно использовать терморезистор другого номинала, соответственно изменив R2 и R3.Конденсатор СЗ — на напряжение не ниже 300V. Транзисторы КТ315Г можно заменить на КТ315Е илиКТ3102Г. КТ3102Е. Диоды КД209 можно заменить на КД105.Все кроме терморезистора и симистора расположено на печатной плате, разводка и монтажная схема которой показана на рисунке под принципиальной схемой.Симистор КУ208Г в металлическом корпусе с крепежным винтом. Его нужно укрепить на металлическом уголке 50×50, который будет работать и как небольшой радиатор. При таком радиаторе мощность до 1000W.

Налаживание.Нужен термометр. Нагреть воду до нужной температуры когда должен включаться нагреватель (следя по термометру), поместить терморезистор в стеклянную пробирку, засыпать песком и заткнуть герметично резиновой пробкой, выпустив через неё провода, и поместить его в эту воду. Подобрать сопротивление R3 таким, чтобы при этой температуре нагреватель включался, а при превышении её выключался. Разницу между температурами включения и выключения (гистерезис) можно установить подбором R5 в небольших пределах.Работая с термостатом, учтите, что он питается непосредственно от электросети, и все его детали под потенциалом сети, поэтому необходимо соблюдать правила техники безопасности при работе с электроустановками.

polezniysayt.ru

Простейшая схема терморегулятора. | Мастер Винтик. Всё своими руками!

Добавил: Chip,Дата: 19 Апр 2016

Простой терморегулятор можно сделать на основе регулируемого стабилитрона TL431. В схеме он  используется в качестве компаратора, которым управляет терморезистор.

Всё это позволяет упростить схему и уменьшить количество деталей.

У TL431 только один вход, второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри самой микросхемы.

Принцип работы терморегулятора

Напряжение на управляющем электроде задается с помощью делителя R1, R2, R3. В качестве R3 используется NTC термистор, у которого сопротивление уменьшается при нагревании.

Когда на выводе «1» микросхемы TL431 напряжение выше 2,5В микросхема открыта — реле включено.

Контакты реле включает симистор, который, в свою очередь, включает нагрузку.

С повышением температуры сопротивление термистора падает, в результате чего, напряжение на выводе «1» становится ниже 2,5В — поэтому реле отключается, следовательно отключается и нагрузка.

С помощью переменного резистора R1 производится настройка температуры срабатывания терморегулятора.

Видео о работе простого терморегулятора на TL431

Валерий Харыбин

P.S. Можно ещё упростить схему, если не ставить симистор, а коммутировать нагрузку непосредственно контактами реле. Для этого должно быть выбрано реле с соответствующим допустимым коммутируемым током для данной нагрузки.

П О П У Л Я Р Н О Е:

  • Как самому сделать светофор?
  • Самодельный простой электронный светофор

    Для игры с машинками очень оказалось бы полезным такое устройство как — СВЕТОФОР! Со светофором игра будет увлекательнее и интересней.

    Давайте рассмотрим два варианта, как можно сделать простой электронный светофор из подручных материалов своими руками.

    Подробнее…

  • Настольная лампа из CD дисков
  • Простая настольная лампа для работы за компьютером своими руками

    Простую настольную лампу для работы за компьютером или ноутбуком в тёмное время суток можно легко сделать из старых ненужных CD, DVD дисков.

    Работая перед монитором в темноте Ваши глаза напряжены и подвержены сильным нагрузкам, поэтому необходимо иметь подсветку рабочего места, особенно клавиатуры. Подробнее…

  • Держатель для печатных плат своими руками
  • При ремонте и настройке радиолюбителям удобно будет работать с помощником — держателем печатной палаты на столе.

    Можно купить различные зарубежные приспособления для закрепления печатных плат, обеспечивающие при этом разные степени их свободы, но стоимость их очень высока.

    Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 4 429 просм.

www.mastervintik.ru

Терморегуляторы для дома и не только. - 24 Октября 2012 - Портфель

Существуют различные мнения по поводу применения терморегуляторов. Некоторые аквариумисты считают, что применение терморегулятора, стабилизирующего температурный режим, нарушает естественное суточное колебание температуры в водоеме. Известно, что днем температура воды повышается за счет нагрева ее солнцем, а в ночное время вода остывает. В тропиках эти колебания обычно не превышают 1 - 2° С. В аквариуме, где применяется терморегулятор, температура воды днем и ночью примерно одинакова. Но, как показывает практика, рыбы и растения чувствуют себя в аквариуме с терморегулятором не только не хуже, а даже значительно лучше, чем без него. Кроме того, исключается случайный перегрев воды.

Купить

Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"

Для аквариума с растениями применение терморегулятора очень желательно, так как большинство гидрофитов является выходцами из тропиков, где вода, как правило, постоянно имеет высокую температуру. Размещение терморегулятора относительно нагревателя в аквариуме имеет существенное значение для равномерного нагрева воды. Терморегулятор целесообразно размещать не далее чем в 3 - 5 см от нагревателя, так как в этом случае термодатчик, быстро нагреваясь до установленной температуры, включает нагреватель на короткое время и включает его при притоке более холодной воды, тем самым удлиняя срок службы нагревателя и обеспечивая более равномерное (но и более медленное) прогревание воды н аквариуме. В аквариуме, находящемся в теплом помещении, нагреватель можно разместить у боковой стенки или в углу. А в холодном помещении, где без обогрева температура воды опускается ниже 20° С, желательно расположить грелку у дна аквариума, или, еще лучше, в грунте. Идеальным вариантов для такого водоема считается подогрев со дна. При этом равно мерно прогревается вся толща воды и, самое главное, прогревается грунт, что очень важно для хорошего роста тропических растений. Какие обогреватели для этого использовать, существенного значения не имеет, главное - их доступность и надежность.

 

Терморегулятор можно сделать в домашних условиях. Ниже приведены несколько вариантов терморегуляторов.

Пример №1

 

Предлагается простой регулятор температуры прогрева воды, выполненный на интегральном компараторе К554САЗ. Как известно, выходное напряжение компаратора может находиться лишь, на стандартных уровнях логической 1 или 0 в зависимости от соотношения напряжений сигнала Uсигн опорного напряжения Uoп. Выходная мощность К554САЗ достаточна для управления исполнительным реле. Таким образом, не требуется мощного дополнительного выходного транзистора.

 

 

 

Пределы регулирования температуры воды для аквариума можно ограничить пределом от 16 до 30° С. Точность регулирования в основном определяется градуировкой регулятора и составляет t = 0,5° С. Схема регулятора представлена, на рис. Резисторы R1 - R4 включены по мостовой схеме. Диагональ моста подключена к компаратору DА1. При превышении напряжением сигнала Uсигн опорного напряжения Uoп  на выходе DА1 появляется логический 0. Реле К1 включается и своими контактами К1.1 и К1.2 подключает нагревательный элемент ЕК к напряжению ~220В, при этом включается контрольная лампочка НL2 "Нагрев”. При нагревании воды сопротивление терморезистора R4 уменьшается, и при достижении Uсигн < U oп  компаратор переключается. Реле отключается, и нагрев воды прекращается. Для получения более высокой температуры нагрева воды надо уменьшить Uoп, т. е. уменьшить сопротивление резистора R2. Для градуировки устанавливают рядом термосопротивление R4 и термометр в емкости с водой. Замерив температуру воды и при необходимости подогревая ее до нужной температуры (например, 20° С), устанавливают движок резистора R2 в положение, когда дальнейший его поворот включает реле К1 (контроль по светодиоду НL2). Точность градуировки ± 0,5° С. Детали. Реле К1 - типа РЭС-9, паспорт РС4.524.200. Ее контакты могут управлять тринистором, включенным в диагональ диодного моста в цепи нагревателя Rн, или симистором (см. риса , б ). Если удастся приобрести оптрон АОУ103В, можно вообще обойтись без реле. Примеры использования этого оптрона для коммутации цепи питания электронагревателя показаны, на (рис в и г ). Терморезистор R4 - типа КМТ1, КМТ2. Применены неоновые лампы ТН-0,2-1. Трансформатор Т1 - на напряжение 220В/27В, вторичная обмотка рассчитана на силу тока 200...300 мА.

 

 

В качестве нагревательного элемента использованы четыре сопротивления типа ПЭВ-20 по 1500 Ом каждый, включенные параллельно. Это дает мощность нагревателя 100 Вт. Нагревательный элемент помещен в стеклянную трубку диаметром 20 мм и длиной 200...250 мм. Для лучшего теплообмена со средой свободное пространство в трубке засыпано кварцевым. песком. Пробка залита эпоксидной смолой. Терморезистор помещен в стеклянную трубку диаметром 7 мм. Один конец трубки оплавлен, второй залит эпоксидной смолой. Следует обратить особое внимание, на тщательность изготовления нагревателя с точки зрения электробезопасности. Нагреватель рассчитан, на аквариум емкостью 50...100 л, При этом нагреватель помещают в зону аэрации для снижения градиента температур по объему аквариума. Можно избежать изготовления самодельного нагревательного элемента, если использовать, например, выпускаемый промышленностью электрокипятильник мощностью не более 200 В А или какой-либо другой готовый прибор с подходящей мощностью.

Пример №2

 

Этот терморегулятор разрабатывался для поддержания необходимой температуры в аквариуме с тропическими рыбками, но благодаря своей универсальности его можно использовать в других случаях когда требуется поддерживать температуру воды или воздуха в пределах 10 - 60° С и управлять нагревателем мощностью до 2 кВт. Терморегулятор имеет полную развязку от электросети и исключает попадание сетевого напряжение в емкость с водой, температура которой контролируется. Точность поддержания температуры достаточно высока - отклонение допускается в пределах одного градуса. Еще одно достоинство - использование в конструкции широкодоступной элементной базы. Принципиальная схема терморегулятора показана, на рисунке. Она содержит измерительный узел построенный на транзисторах VT1 и VT2 по схеме триггера Шмитта, исполнительное устройство на транзисторах VT3 и VT4 и на электромагнитном реле Р1, а также гальванически развязанный от сети источник питания на трансформаторе Т1. Триггер Шмитта следит за сопротивлением терморезистора R1, а именно за напряжением, образованным делителем из резисторов R1, R3 и R2. Когда сопротивление резистора R1, уменьшаясь под действием температуры, проходит через нижний порог срабатывания триггера. Триггер своим выходным сигналом при помощи коммутирующего устройства выключает нагревательный элемент и нагрев

 

 

воды прекращается. Вода начинает остывать, и вместе с этим увеличивается сопротивление R1. Как только напряжение на R1, R3 превысит верхний порог срабатывания триггера, он переключится в противоположное состояние и при помощи коммутирующего устройства подаст питание на нагреватель. Затем, при нагревании воды весь процесс повторится. Таким образом, регулятор будет, периодически включая нагреватель поддерживать температуру воды, на заданном уровне. А этот уровень можно задать, изменяя сопротивление R3 включенное последовательно с терморезистором. В эмиттерную цепь транзисторов VT1 и VT2, на которых построен триггер Шмитта, включен два диод VD2 который служит, для сужения петли гистерезиса триггера и способствуют более точному поддержанию температуры. Связь между транзисторами непосредственная, по этому открывание первого из них приводит к закрыванию второго и наоборот. В то время когда открыт VT1 на его коллекторе небольшое напряжение и VT2 закрывается, а в результате по цепи R6 R9 напряжение поступает на базу транзистора VT3, который открывается и открывает транзистор VT4, на реле Р1 поступает ток и его контакты замыкаются подавая сетевое напряжение на нагреватель. При закрывании VT1 через цепь R4 R5 открывается транзистор VT2 и шунтирует базовую цепь VT3 на столько, что этот транзистор закрывается, а вслед за ним и VT4.

Купить

Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"

Ток через обмотку реле прекращается, и оно размыкает свои контакты, выключая нагреватель. Питается устройство от источника нестабилизированного напряжения 10 - 12В на трансформаторе Т1. В качестве трансформатора используется кадровый трансформатор ТВК110Л от старого черно-белого лампового телевизора (УЛППТ-61). При помощи омметра находят высокоомную обмотку, которая будет сетевой, а низкоомную используют как вторичную. Реле Р1 - автомобильное реле 3747.10 от переднеприводных "Жигулей”. Вместо него можно использовать любое другое реле, с обмоткой на 10 - 12В и с контактами, соответствующими мощности нагрузки. Автомобильное реле без подгорания контактов коммутирует нагрузку до 2 кВт. Контакты Р1 могут управлять тринистором, включенным в диагональ диодного моста в цепи нагревателя Rн, или симистором ( рис а, б ). Если удастся приобрести оптрон АОУ103В, можно вообще обойтись без реле. Примеры использования этого оптрона для коммутации цепи питания электронагревателя показаны, на (рис в и г ).

 

 

 В процессе настройки нужно подобрать номинал R9 так чтобы реле надежно срабатывало и отпускало. В редких случаях требуется подбор и R4. Температурный диапазон устанавливается резистором R2, а температура, которую нужно поддерживать - резистором R3. В авторском варианте роль нагревательного элемента играет паяльник, на 100 Вт, погруженный в бутылку с широким горлышком (молочную на поллитра), заполненную речным песком. Горлышко бутылки должно возвышаться, на поверхностью воды, так чтобы вода в нее не попадала. К резистору R1 подпаяны провода, и затем он залит эпоксидной смолой (включая и места пайки) так чтобы он не имел электрического контакта с водой.

Пример №3

 

    Технические данные терморегулятора:

напряжение питания - 220 вольт, 50 герц;коммутируемая мощность активной нагрузки — 100 ватт;дифференциал (время между включением и отключением нагрузки) — не более 0,5 секунды.

 

 

Терморегуляторы далеко не всегда бывают в продаже, да и стоят они довольно дорого. Предлагаю сделать прибор самому. Схема его очень проста и надежна в работе. Все мои терморегуляторы собраны по такой схеме и работают уже в течение долгих лет. Главным элементом схемы является микросхема DA1 — операционный усилитель, включенный в режим компаратора. Регулировка заданной температуры производится переменным резистором R2. Термодатчик R5 подключен к схеме через фильтр С1, R7 — для уменьшения наводок (он вынесен из схемы на 1 - 1,5 метра). Конденсатор С2 создает отрицательную обратную связь по переменному току. Сопротивление R9 выравнивает потенциалы катода и управляющего вывода при выключенном тиристоре. Питание схемы осуществляется через параметрический стабилизатор на стабилитроне Д1. Конденсатор СЗ — фильтр по питанию. В связи с тем, что на балансном резисторе R10, выделяется некоторая мощность, желательно собрать его из двух-трех включенных параллельно резисторов соответствующих номиналов. Общее сопротивление R10 может быть от 20 до 30 кОм. Большое достоинство данной схемы — отсутствие сетевого трансформатора, самого ненадежного элемента. Ведь терморегулятор подключен к сети круглосуточно, и перегрев или возгорание трансформатора чреваты большими неприятностями. Нагрузку включают в гнезда RH. Неоновая лампочка служит сигнализатором включения. Работа схемы. Когда температура воды, а следовательно, и термодатчика, находящегося в ней, меньше заданного уровня (выставляется R2), напряжение на выводе 6 микросхемы DA1 близко к напряжению питания, тиристор Д2 открыт и обогреватель подключен к сети через диодный мостик ДЗ - Д6.

Купить

Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"

Лампа Л1 горит. В процессе нагрева температура воды увеличивается, и как только она достигнет заданного уровня, микросхема переключится, и напряжение на ее выходе будет близко к нулю. Тиристор Д2 закрывается и отключает обогреватель от сети. Конечно, желательно обогреватель помещать близко от распылителя. Термодатчик подключают к схеме экранированным проводом, помещенным в хлорвиниловую трубку. Экран подключают к общему проводу схемы. Если нет экранированного провода, то монтаж ведут двумя тонкими проводами, свитыми в жгут и помещенными в хлорвиниловую трубку Длина провода может быть 1 - 1,5 метра. На сам терморезистор, натягивают более толстую трубку и герметизируют с обоих концов герметиком (КЛТ-30, ВГО-1, КЛ-4, "Спрут”, "Стык”). Можно применять и эпоксидный клей. При повторении схемы, возможно, придется подобрать резистор R8 для надежного открытия и закрытия тиристора Д2, так как все тиристоры имеют большой разброс по току включения. Детали и их замена. В качестве микросхемы DA1 подойдет К140КД7, К140УД8, К153УД2. Электролитические конденсаторы — любого типа Их номинал не критичен и может отличаться от указанного на схеме на 40 - 50 процентов Главное, чтобы напряжение их было выше напряжения питания (которое при использовании стабилитрона Д1 - Д814Д составляет около 12 вольт) в 1,5 — 2 раза. Терморезистор R5 — типа ММТ-4 (допустима замена на любой другой с отрицательным ТКС), номинал его также не критичен и может быть от 10 до 50 кОм Главное, чтобы выполнялось условие R4 = R5, резисторы R6 и R7 могут быть от 4,7 до 47 кОм. Стабилитрон Д814 с любым буквенным индексом. Тиристор Д2 можно заменить на КУ201Л, КУ202Л. Диоды ДЗ - Д6 - подойдут Д226Б, Д226В или диодный блок типа КЦ402, КЦ404, КЦ405 с буквенным индексом А, Б, В, Г, Ж, И. Неоновая лампочка — любого типа Постоянные резисторы — тоже любого типа Мощность рассеивания R10 — 2 ватта. Если предполагается использовать обогреватель мощностью более 100 ватт, необходимо применить более мощные диоды ДЗ - Д6. При этом тиристор и диоды придется установить на небольшие радиаторы.

 

Пример №4

 

Терморегулятор предназначен для поддержания заданной температуры жидкости (например, фотораствора, воды в аквариуме, воды в системе электрического водяного отопления), воздуха в теплице, в жилом помещении и пр. Основой терморегулятора является триггер Шмитта, выполненный на логических элементах D1.1, D1.2 и резисторах R4, R5 (с его работой вы знакомы). На вход триггера, поступает напряжение с делителя R1, R2, RЗ. Датчиком температуры служит терморезистор RЗ. При увеличении температуры его сопротивление уменьшается и поданное на вход триггера, напряжение также уменьшается, что приводит к переключению триггера. При этом на его выходе (вывод 4 микросхемы) устанавливается напряжение низкого уровня, транзистор V2 и тринистор VЗ закрываются, нагреватель, подключенный к разъему Х1, обесточивается. Температура воздуха или жидкости начинает уменьшаться, и при некотором ее значении триггер вновь переключается, включается нагреватель. В процессе работы такие включения и выключения периодически повторяются. Температуру, при которой происходит переключение триггера, устанавливают переменным резистором R1. Точность поддержания заданной температуры определяется в основном сопротивлением резистора R4. Дело в том, что с увеличением его сопротивления увеличивается разница между порогами переключения триггера, следовательно, уменьшается точность поддержания температуры. Однако использовать резистор меньше 10 кОм не следует.

 

Мощность нагревателя не должна, превышать 200 Вт. Если мощность необходимо увеличить, следует подобрать тринистор VЗ и соответственно мощность выпрямителя V4. Так; для мощности нагревателя 2000 Вт потребуются тринистор КУ202М и диоды Д246 (4 шт.), которые включают по схеме выпрямительного моста. Тринистор и диоды придется установить на радиаторах с поверхностью охлаждения-300 см 2 (для тринистора) и 70 см 2 (для каждого диода). Терморезистор RЗ может быть любого типа, например КМТ-1, КМТ-4, КМТ-12, МТ-6 и др.

Пример №5

 

Он разработан группой ребят под руководством Сергея Овсенева и позволяет поддерживать заданную температуру в небольшом аквариуме с точностью до 2°. Чувствительным элементом термерегулятора  - датчиком температуры, является терморезнстор R 2. Он включен в делитель напряжения R1 - R З. Снимаемое с терморезистора постоянное напряжение поступает на усилитель постоянного тока, выполненный на транзисторах VI, V 2. Нагрузка усилителя - электромагнитное реле К1, контакты которого включены в цепь электрического нагревателя (на схеме для простоты не показан). Пока температура не достигла заданной, через обмотку реле протекает ток и нагреватель включен. При повышении температуры воды до определенного значений сопротивление датчика R 2 уменьшается настолько, что реле отпускает и своими контактами отключает нагреватель. Температуру срабатывания автомата устанавливают подстроечным резистором R З.

 

Терморезистор может быть ММТ-1, ММТ-9, ММТ-13, КМТ-12 сопротивлением 1..10 кОм. Его покрывают тонким слоем эпоксидной смолы. Реле РЭС-15, паспорт РС4.591.003, пойдёт и РЭС-10, паспорт РС4.524.302 (в этом случае придется заменить стабилитрон Д814В на Д814Д и подобрать резистор R 5 для обеспечения нужного тока срабатывания реле. Контакты применяемого реле рассчитаны на сравнительно небольшой ток коммутации, поэтому при использовании терморегулятора для аквариума с мощным нагревателем следует установить промежуточное реле и подключить его обмотку к источнику питания через контакты реле К1.

ПРОСТОЙ ТЕРМОСТАТ

Сейчас в литературе есть множество описаний   термостатов   и терморегуляторов  на микросхемах, логических  микросхемах, микроконтроллерах. Но  бывает необходимость и в предельно простых схемах, по  которым можно сделать термостат практически из того что есть дома, и в короткий срок. Описываемый здесь термостат можно использовать для поддержания температуры устанавливаемой в довольно широких пределах. Его можно использовать для  поддержания  положительной температуры зимой в овощехранилищах, или в сауне, или для поддержания комфортной  температуры в жилом помещении. Все зависит от величины сопротивления   резистора R3. которое, устанавливают при налаживании (пределы от нуля до 2 мегаом).Сопротивление R-R2 вместе с сопротивлением терморезистора R1 образует делитель напряжения на базе транзистора VT1. Схема на транзисторах VT1 и VT2 образует триггер Шмитта, а база VT1 является его входом. Когда температура ниже установленной величины, которую нужно поддерживать, сопротивление R1 велико, и ток базы транзистора VT1 низок на столько что он закрывается. Напряжение на его коллекторе при этом растет и приводит к открыванию транзистора VT2 В результате симистор VS1 открывается и включает питание нагревателя. А за счет тока через транзистор VT2 напряжение на эмиттере VT1 немного увеличивается, что фиксирует триггер а таком состоянии, создавая гистерезис. Когда температура повышается вследствие работы нагревателя сопротивление R1 уменьшается и ток базы VT1 растет. В некий закрывается и нагреватель выключается.

Купить

Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"

Далее все повторяется снова и снова. Температура поддерживается периодическим включением и выключением нагревателя. Питается схема транзисторного термореле от бестрансформаторного источника. Сетевое напряжение на него поступает через конденсатор СЗ реактивное сопротивление которого берет на себя большую часть сетевого напряжения. Затем идет выпрямитель на диодах VD2-VD3 и стабилитрон VD1.

Практически получается параметрический стабилизатор из этого стабилитрона и реактивного сопротивления СЗ. Пульсации сглаживает конденсатор С2. В схеме используются постоянные резисторы типа МЛТ 0,125. Терморезистор КМТ-4 с отрицательным ТКС

и номинальным сопротивлением 220 К (при температуре 25°С). Можно использовать терморезистор другого номинала, соответственно изменив R2 и R3. Конденсатор СЗ - на напряжение не ниже 300V. Транзисторы КТ315Г можно заменить на КТ315Е или КТ3102Г. КТ3102Е. Диоды КД209 можно заменить на КД105. Все кроме терморезистора и симистора расположено на печатной плате разводка и монтажная схема которой показана на рисунке под принципиальной схемой. Симистор КУ208Г в металлическом корпусе с крепежным винтом. Его нужно укрепить на металлическом уголке 50x60, которой будет работать и как небольшой радиатор. При таком радиаторе мощность до 1000W.

Налаживание.

Нужен термометр. Поместить терморезистор в стеклянную пробирку, засыпать песком и заткнуть герметично резиновой пробкой, выпустив через неё провода, и поместить его в эту воду. Нагреть воду до нужной температуры включения нагревателя (следя по термометру). Подобрать сопротивление R3 таким, чтобы при этой температуре нагреватель включался, а при превышении её выключался. Разницу между температурами включения и выключения (гистерезис) можно установить подбором R5 в небольших пределах. Работая с термостатом учтите, что он питается непосредственно от электросети, и все его детали под потенциалом сети, поэтому необходимо соблюдать правила техники безопасности при работе с электроустановками.

Кувшинов А.Н.

Продолжение обзора

 

 

www.junradio.com

Простой электронный термостат для холодильника на LM35. Схема и описание

Данный электронный термостат для холодильника поможет в тех случаях, когда собственный (заводской) термостат неисправен или его точность работы уже недостаточна. В старых холодильниках используется механический термостат температуры с использованием жидкости или газа, которыми заполнен капилляр.

При изменении температуры меняется и давление внутри капилляра, которое передается на мембрану (сильфона). В результате термостат включает и выключает компрессор холодильника. Конечно же, подобная система термостатирования имеет низкую точность, и детали ее со временем изнашиваются.

Описание работы термостата для холодильника

Как известно температура хранения пищевых продуктов в холодильной камере должна быть +2…8 градусов Цельсия. Рабочая температура холодильника +5 градусов.

Электронный терморегулятор для холодильника характеризуется двумя параметрами: температура запуска и остановки (либо средняя температура плюс значение гистерезиса) компрессора. Гистерезис необходим для предотвращения слишком частого включения компрессора холодильника.

В данной схеме предусмотрен гистерезис в 2 градуса при средней температуре в 5 градусов. Таким образом, компрессор холодильника включается, когда температура достигнет + 6 градусов и отключается при снижении ее до + 4 градусов.

Этот температурный интервал достаточный для поддержания оптимальной температуры хранения продуктов, и при этом он обеспечивает комфортную работу компрессора, предотвращая его чрезмерный износ. Это особенно важно для уже старых холодильников, использующих термореле для запуска двигателя.

Электронный термостат является подходящей заменой оригинального термостата. Терморегулятор считывает температуру с помощью датчика, сопротивление которого меняется в зависимости от изменения температуры. Для этих целей довольно часто используют термистор (NTC), но проблема заключается в его низкой точности и необходимости в калибровке.

Для обеспечения точной установки контролируемой температуры и избавления от многочасовой калибровки, в данном варианте термостата для холодильника был выбран датчик температуры LM35. Он представляет собой интегральную схему, линейно откалиброванную в градусах Цельсия, с коэффициентом 10 мВ на 1 градус Цельсия. В связи с тем, что пороговая температура близка к нулю, относительное изменение выходного напряжения велико. Поэтому сигнал с выхода датчика можно контролировать с помощью простой схемы состоящей всего из двух транзисторов.

Так как выходное напряжение слишком мало, чтобы открыть транзистор VT1, датчик LM35  включен как источник тока. Его выход нагружен резистором R1 и поэтому сила тока на нем  изменяется пропорционально температуре. Этот ток влечет падение на резисторе R2. Падение напряжения управляет работой транзистора VT1. Если падение напряжения превышает пороговое напряжение перехода база-эмиттер, транзисторы VT1 и VT2 открываются, реле К1 включается, чьи контакты подключены вместо контактов старого термостата.

Резистор R3 создает положительно обратную связь. Это добавляет небольшой ток к сопротивлению R2, который сдвигает порог и тем самым обеспечивает гистерезис. Обмотка электромагнитного реле должна быть рассчитана на 5…6 вольт. Контактная пара реле должна выдерживать необходимый ток и напряжение.

Датчик LM35 расположен внутри холодильника в подходящем месте. Сопротивление R1 припаивается непосредственно к датчику температуры, что в свою очередь позволяет соединить LM35 с монтажной платой всего двумя проводами.

Провода соединяющие датчик могут внести в схему помехи, поэтому для подавления помех добавлен конденсатор С2. Схема работает от источника питания 5 вольт построенного на стабилизаторе 78L05. Потребление тока главным образом зависит от типа используемого реле. Блок питания должен быть надежно изолированы от сети.

Большим преимуществом этой схемы является то, что она начинает работать сразу при первом запуске и не нуждается в калибровке и настройке. Если возникнет необходимость немного изменить уровень температуры, то это можно сделать путем подбора сопротивлений R1 или R2. Сопротивление R3 определяет величину гистерезиса.

www.joyta.ru

Для умельцев - схемы терморегуляторов

 

 

схемы и описание терморегуляторов

  Основным узлом любого инкубатора, как известно, является терморегулятор. В популярной научно-технической литературе можно встретить большое количество схем, позволяющих изготовить такое устройство самостоятельно. Выбор здесь достаточно широк и по схемотехническим решениям, и по элементной базе. Не смотря на значительные различия, есть одно обстоятельство, которое их объединяет: все они работают в так называемом "дискретном" режиме (нагрев-пауза-нагрев). Такой режим нельзя признать оптимальным, т.к. он противоречит принципу "природосообразности". В самом деле, не вскакивает ведь наседка каждые 3–5 минут с гнезда. Обогрев яиц происходит непрерывно при строго определенной температуре. Поэтому при постройке собственного инкубатора ставилась задача реализовать именно такой режим в работе терморегулятора: непрерывный (или "аналоговый"). Точность поддержания температуры обогрева должна составлять ± 0,3 °C. Силовой элемент (тиристор) управляется фазоимпульсным методом. Принципиальная схема терморегулятора показана на рис 1.

Рис.1 Принципиальная схема терморегулятора.

   Получилось простое и достаточно экономичное устройство. Функционирует оно так. В момент включения нагревательный элемент работает на полную мощность. По мере повышения температуры в инкубаторе, мощность нагревательного элемента плавно уменьшается. В рабочем режиме, при достижении температуры 38,2 °C, устанавливается термодинамическое равновесие, при котором количество тепла, получаемого от нагревателя, становится равным количеству тепла, рассеиваемому через щели и вентиляционные отверстия инкубационной камеры. Замеры показали, что в рабочем режиме инкубатор потребляет от сети примерно 10–12 Вт (количество обогреваемых яиц может достигать 300 штук). Учитывая, что инкубационный период длится 21–31 день (в зависимости от вида птицы), последнее обстоятельство является решающим при оценке себестоимости продукции.    Назначение элементов схемы тиристорного регулятора.    Транзисторы VT1, VT2 образуют аналог однопереходного транзистора. Диод VD9, включенный в обратном направлении, выполняет роль термодатчика, который установлен внутри инкубационной камеры. Когда температура меньше рабочей, сопротивление термодатчика велико, транзистор VT3 закрыт и не оказывает влияние на работу однопереходного транзистора, тиристор открывается в начале каждого полупериода напряжения сети, нагревательный элемент включен на полную мощность. При повышении температуры в инкубационной камере, сопротивление термодатчика VD9 уменьшается, транзистор VT3 переходит в проводящее состояние и начинает шунтировать интегрирующий конденсатор С1. Время его зарядки увеличивается, аналог однопереходного транзистора (VT1, VT2) станет включаться позже. Время включенного состояния тиристора VS1 станет меньше, мощность нагревательного элемента уменьшится. При достижении рабочей температуры в камере, транзистор VT3 будет почти полностью открыт, а время включенного состояния тиристора станет минимальным, мощность нагревательного элемента также станет минимальной. Он будет отдавать в камеру столько тепла, сколько она теряет через вентиляционные отверстия. Такое состояние теплового равновесия будет сохраняться сколь угодно долго. Если температура в камере начнет понижаться (например, приоткрыть дверь камеры), то сопротивление термодатчика VD9 увеличится, сопротивление коллектор-эмиттер транзистора VT3 станет больше, интегрирующий конденсатор станет заряжаться быстрее, аналог однопереходного транзистора, и тиристор будут открываться раньше, нагревательный элемент будет дольше подключен к сети, количество тепла станет больше. Так будет до тех пор, пока температура не повысится до рабочей. Если температура станет повышаться выше рабочей, сопротивление термодатчика станет еще меньше, транзистор VT3 откроется полностью и "закоротит" интегрирующий конденсатор С1, тиристор VS1 выключится, нагревательный элемент отключится от сети. При понижении температуры процесс пойдет в обратном направлении. Переменный резистор R6 задаёт значение рабочей температуры в инкубационной камере. Стабилитрон VD8 стабилизирует работу аналога однопереходного транзистора. Если его исключить, точность поддержания температуры в инкубаторе станет равной ±1,5°C, что, конечно, не допустимо. Диод VD5 защищает транзисторы VT1, VT2 от пробоя. Последовательно включенные стабилитроны VD6, VD7 можно заменить одним стабилитроном, у которого напряжение стабилизации равно сумме напряжений стабилизации VD6 и VD7. Резистор R3 определяет напряжение открывания аналога однопереходного транзистора. На начальном этапе настройки вместо него включают переменный резистор сопротивлением 20 кОм, стабилитрон VD8 также временно отключают. Добиваются устойчивой работы терморегулятора в рабочем режиме. Отключают терморегулятор, измеряют сопротивление переменного резистора, и вместо него подключают постоянный резистор такого значения. Эта операция наиболее ответственна, и её, возможно, придется повторить несколько раз, чтобы наиболее точно подобрать R3, может быть также понадобится уточнить значение резистора R2. Транзистор VT3 должен иметь коэффициент усиления по току β=60-100. Большие значения коэффициента усиления делают терморегулятор слишком чувствительным, и даже незначительные флуктуации теплового потока в инкубационной камере изменяют режим его работы: он становится "колебательным". Меньшие значения коэффициента снижают точность поддержания температуры.    Элементная база.    В терморегуляторе использованы постоянные резисторы R2, R3, R5 типа МЛТ, ВС-0,25, R1-МЛТ-2, R6-СП4-2М, СПО-1, конденсатор С1-МБМ, К71-5 на напряжение не менее 160 В, транзистор Т1 можно заменить на МП-39, МП-41, КТ-501, КТ-3107, транзистор Т2- на МП-36, МП-38, КТ-503, КТ-3102, Т3- на КТ-611, КТ-503, диоды VD1- VD4- на КД202К, КД202Л, КД202Н, КД202Р, КД202С, диод VD5- на Д226В. У транзисторов Т1 - Т3 могут быть любые буквенные индексы. В качестве термодатчика VD6 можно использовать р-n- переходы германиевых транзисторов МП-40, МП-41, МП-42, МП-26. Тиристор VS1 можно заменить на КУ201К. Стабилитроны VD6, VD7, VD8-на Д814А. Реле К1 - импортное TSG1, с одной парой замыкающих и одной парой размыкающих контактов. Катушка реле К1 рассчитана на напряжение 220 В. Нагревательный элемент–две параллельных цепи ламп (одна в верхней части камеры, другая – в нижней). В каждой цепи – две последовательно включенных лампочки по 100 Вт каждая. Общая максимальная мощность нагревательного элемента не должна превышать 100 Вт при использовании тиристоров серии КУ201. К корпусу тиристора прикручивают медную или алюминиевую пластину площадью не менее 9 см2, которая будет выполнять роль теплового радиатора. Если мощность нагревательного элемента будет превышать 100 Вт, то тиристор VS1 заменяют на КУ202Н или КУ202М, а резистор R1 должен иметь мощность теплового рассеяния ≥5 Вт, диоды VD1 – VD4 также должны выдерживать возросшую токовую нагрузку. В авторском варианте при сборке терморегулятора использовалась текстолитовая плата и применялся навесной монтаж. При наличии соответствующих навыков можно изготовить печатную плату, один из вариантов которой приведён на рис.2.

рис.2 Печатная плата.

Пропорциональный термостабилизатор для инкубатора

  Этот терморегулятор использует вертикально-фазовый метод регулирования мощности в нагревательном элементе. На компараторе VT1 сравниваются сдвинутое на 90 эл.градусов напряжение со вторичной обмотки трансформатора Тр1 и постоянное напряжение разбаланса моста, усиленное дифкаскадом VT4, VT5, через повторитель VT3. В момент равенства сигналов, через усилитель мощности VT2, ток управления открывает тиристор VD4. Терморезистор R12 находится в корпусе инкубатора, в месте закладки яиц, и защищен от лучевого излучения нагревателя. Благодаря обратной связи через терморезистор температура воздуха в инкубаторе стабилизируется. В отличие от ключевых схем, изменение мощности в нагревательном элементе пропорционально величине отклонения температуры. Регулятор использует один полупериод сетевого напряжения, поэтому мощность нагревателя (обычно используют лампы накаливания) необходимо увеличить вдвое, по отношению к достаточной для достижения заданной температуры в вашей конструкции инкубатора. При первичном включении инкубатора процесс установления рабочей температуры носит колебательный затухающий характер, из-за инерционности обратной связи через воздух и термодатчик. После прогрева происходит захват и пропорциональное регулирование. Из-за гальванической связи с питающей сетью схему необходимо изолировать от пользователя (и терморезистор то-же).  Не спешите закладывать яйца - дайте поработать инкубатору хотя бы сутки, а вы за это время проградуируйте шкалу потенциометра с помощью лабораторного термометра. Да и неожиданный отказ ненадежных элементов чаще происходит в первые часы работы (справедливо для любых схем). При необходимости иметь большие пределы рабочей температуры, надо увеличить номинал потенциометра R14. При ином номинале терморезистора измените пропорционально элементы моста R9, R11, R14, R15. Максимальная мощность нагревателя определяется типом примененного тиристора. При установке более мощного тиристора необходимый ток управления подберите резистором R7. Небольшой радиатор для тиристора обычно необходим. Сопадение фаз управления и анодного напряжения тиристора добейтесь поменяв местами концы первичной обмотки Тр1, если он не открылся сразу при холодном датчике.

 

Многим радиолюбителям известен так называемый "триггерный эффект" на пороге срабатывания термо-, фотореле, автоматического зарядного устройства и т.п. Устройство может сработать нормально десятки раз, но иногда бывает такой неприятный момент, когда исполнительное реле включится, сразу же выключится, опять включится и т.д. Такое явление может проявляться довольно длительное время - "подгорают" контакты реле, да и ресурс времени работы реле не безграничен. Если в схеме применены тиристоры, то при частом включении-выключении они могут греться и выходить из строя, а также давать помехи в питающую сеть. На рис.1 показана схема терморегулятора на реле, в котором такое вредное явление, как "триггерный эффект", отсутствует. 

                                                                               

       Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5...38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как "триггерный эффект", в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В. Печатная плата

 

терморегулятора показана на рис.2. 

На рис.3 показана схема терморегулятора с тиристором в силовой части, которая также свободна от явления "триггерного эффекта".

Предположим, что данный терморегулятор также используют для инкубатора, необходимая температура воздуха в нем должна быть в пределах +38...39°С (данный диапазон температур выставляют переменным резистором R4). На ОУ микросхемы DA1 выполнен двухпороговый компаратор. Если температура в инкубаторе ниже +38°С, сопротивление терморезистора R3 сравнительно большое, и оба компаратора находятся в состоянии положительного насыщения (уровень лог."1" на их выходах). На логических элементах DD1.2, DD1.3 построен RS-триггер. Если температура воздуха в инкубаторе ниже +38°С, на входе S RS-тригге-ра присутствует лог."0" (после инвертора DD1.1), на входе R - лог."1", триггер находится в "единичном" состоянии (лог."0" на его инверсном выходе 4 DD1.3). При этом транзистор VT1 закрыт, на управляющий электрод тиристора VS1 подается положительный потенциал относительно его катода, тиристор открыт, нагревательный элемент Rн включен. При достижении температуры воздуха в инкубаторе +38°С сопротивление терморезистора R3 уменьшается, компаратор на DA1.1 перебрасывается из состояния положительного насыщения в состояние отрицательного насыщения, на его выходе устанавливается лог."0", на входе S триггера - лог."1", но триггер остается в "единичном" состоянии, нагревательный элемент RH включен. Когда температура воздуха в инкубаторе достигнет значения +39°С, лог."0" появится и на выходе компаратора DA1.2, который по входу R RS-триггера установит его в "нулевое" состояние. При этом на выводе 4 DD1.3 появится лог."1", которая откроет транзистор VT1, на управляющем электроде тиристора VS1 установится низкий потенциал относительно его катода, тиристор закроется, и нагреватель отключится от питающей сети. Когда температура воздуха в инкубаторе станет ниже +39°С, но выше +38°С, в состояние положительного насыщения установится компаратор DA1.2, но лог."1" на входе R триггера не изменит его нулевого состояния, и нагреватель по-прежнему будет отключен. И только при понижении температуры воздуха в инкубаторе ниже +38°С, в состояние положительного насыщения установится компаратор DА 1.1, на вход S триггера поступит лог."0", который включит в работу нагреватель Rн. Таким образом, температура в инкубаторе поддерживается в пределах +38...+39°С (необходимую разность температур достигают подбором сопротивления резистора R2), и явление "триггерного эффекта" в данной схеме терморегулятора отсутствует. Печатная плата терморегулятора показана на рис.4.

При налаживании и эксплуатации устройства необходимо соблюдать осторожность и не касаться деталей, так как в схеме присутствует потенциал сети. Целесообразно для более точной и плавной регулировки температуры подобрать переменный резистор R4 (также и в схеме рис.1). Диоды VD1-VD4 можно исключить. В этом случае на нагревателе Rн будет только одна полуволна сетевого напряжения, т.е. при мощности 500 Вт на нагревателе будет выделяться 250 Вт, и значительно возрастет надежность и долговечность самого нагревателя. Напряжение на вторичной обмотке трансформатора Т1 должно быть в пределах 13...16 в. 

  Еще схемы

masterovoi2009.ucoz.ru

СХЕМА ТЕРМОРЕГУЛЯТОРА - Термометры - Конструкции для дома и дачи

Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне. Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов.

 

Схема терморегулятора - первый вариант    Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:  

 Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов - в архиве.

Схема терморегулятора - второй вариант  

 Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и "помехонекапризной" работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

   Работа регулятора температуры на макетной плате понравилась - приступил к окончательной сборке на печатной плате.

   Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.  

 Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

   В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 - это означает датчик отключен или обрыв.  

 И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу :) Единственное что жена забраковала - маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

   Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор - ГУБЕРНАТОР.АРХИВ:Скачать

cxema.my1.ru