ул.Симферопольская
дом 5, офис 9
Корзина
Корзина пуста
Как проверить дроссель с мультиметром и без него. Все причины неисправности ПРА и ЭПРА. Не горит люминесцентная лампа как проверить
Как проверить люминесцентную лампу
Люминесцентные лампы применяются в качестве основного освещения помещений. Неисправность приводит к недостаточной освещенности, отсутствию комфорта пребывания. Гул неисправного светильника раздражает. Мерцание лампы исключает возможность трудовой деятельности, неблагоприятно влияет на зрение. Прежде чем приступить к устранению, необходимо четко уяснить принципы работы и знать признаки проявлений неисправности составных частей конструкции.
Принцип работы
Люминесцентная лампа по принципу действия относится к газоразрядным источникам света. Стеклянная трубка заполнена парами ртути и инертным газом. В противоположные концы встроены электроды. Длина лампы может быть разной. В режиме запуска между ними возникает дуговой разряд, который приводит к появлению ультрафиолетового излучения. Оно, воздействуя на слой люминофора, которым покрыта внутренняя поверхность колбы, заставляет его светиться в видимом человека спектре. В режиме работы дуговой разряд поддерживается эмиссией электронов с нити катода. Светящийся слой может быть разного цвета.
Работает лампа в двух режимах: зажигания и свечения. Обеспечивает эти состояния светильник. Его принципиальная электрическая схема показана на рисунке 1.
Рисунок 1. Схема работы режимов зажигания и свеченияВ светильниках нового поколения используется электронный балласт. Лампочка с цоколем g23 имеет компактный размер, а драйвер для питания встроен в корпус. Они бывают трех видов, но все обеспечивают определенный режим работы, их четыре:
- включения;
- предварительного нагрева;
- поджига;
- горения.
За счет правильно подобранных режимов работы такие устройства продлевают срок службы лампы, имеют высокий КПД. В режиме горения уровень напряжения на электродах в ряде случаев позволяет работать лампе с перегоревшими спиралями катодов, что невозможно при применении стандартной схемы включения.
Рисунок 2. Схема подключения электронного балласта.Перед тем как прозвонить люминесцентную лампу нужно ознакомиться с причинами возможных неисправностей.
Почему перегорают люминесцентные лампы
Поврежденная люминесцентная лампаЭлектроды люминесцентной лампы изготавливаются их вольфрамовой нити. Во время возникновения разряда происходит их сильный нагрев, и как следствие быстрое перегорание. Для того чтобы продлить срок службы вольфрамовую нить покрывают слоем активного щелочного металла. Этим достигается стабилизация тлеющего разряда между электродами, следовательно, не происходит чрезмерного перегрева, целостность электрода сохраняется в течение долгого времени. В результате многократных включений покрытие постепенно разрушается, происходит его осыпание. Разряд проходит только через оголенную часть спирали. Точечный нагрев приводит к ее перегоранию. Стандартная схема подключения, которая содержит дроссель и стартер, такую лампу не включит. Трубчатый корпус не должен иметь повреждений. Это главное условие, не дающее преждевременно сгореть лампе.
к содержанию ↑Выявление неполадок и их устранение
Люминесцентный светильник – сложное устройство. Неисправность любого его элемента может привести к неполадкам в работе.
Они могут проявляться в виде:
- полного отсутствия признаков включения;
- кратковременных мерцаний лампы с последующим включением;
- продолжительного мерцания без включения;
- мерцания в режиме горения.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуДля проверки люминесцентных ламп и элементов светильника достаточно иметь мультиметр или домашний индикаторный тестер.
Целостность спиралей-электродов
Как прозвонить люминесцентную лампу показано на рисунке 3.
Рис 3. Прозвонка электродовДля этого можно воспользоваться мультиметром. Пригодна также отвертка с индикатором замыкания цепи.
Для прозвона переключатель мультиметра устанавливают в положение измерения сопротивления. Необходимо выбрать наименьший предел измерений (Ώ) или установить переключатель в положение для прозвонок целостности цепи со звуковым сигналом. Измерительные шнуры подключить к выводам электрода. Прозвонить лампу. Звуковая сигнализация либо показания прибора, отличающиеся от бесконечности, говорят о целостности спирали. Аналогичные действия провести со второй спиралью. Если монитор прибора показал состояние «обрыв» или не включился звуковой сигнал – работоспособность лампы утрачена. Ее можно попробовать «зажечь» в балластных светильниках.
Для проверки электродов может быть использована отвертка, с функцией, предусматривающей прозвон цепи. Цепь «1-й вывод электрода – отвертка – тело человека – 2-й вывод электрода» должна прозваниваться, в этом случае загорится светодиодный индикатор, который встроен в тестер. Проверять надо обе спирали. Отсутствие индикации хотя бы одного электрода говорит о неисправности лампы.
Неисправности в электронном балласте
Внимание! Включать балласт в сеть без нагрузки запрещено, прибор может перегореть.
Определить исправность балласта, которым оборудован люминесцентный светильник, можно подключив к его контактам лампочку накаливания мощностью до 60 Ватт. Она должна слабо светиться.
Электронный балласт – сложное радиоэлектронное устройство. Проверка и ремонт электронной схемы проводятся с использованием специальных приборов, например осциллографа.
Однако самые распространенные неисправности можно устранить без его применения. На рисунке показана одна из схем балласта.
Рисунок 4. Плата электронного балласта.Часто выходят из строя предохранитель, выходной конденсатор и транзисторы, они показаны на рисунке.
Чтобы правильно проверить предохранитель его выпаивают из схемы. Определение целостности проводят тестером. Показания прибора должны отличаться от бесконечности.
Рабочее напряжение на электродах с выхода балласта может быть в пределах 500 В. Китайские производители устанавливают конденсаторы, имеющие пониженный предел номинального напряжения, всего 400 В. Отсюда частые неисправности.
Цена транзисторов несоизмеримо меньше цены нового балласта, поэтому есть выгода в том, чтобы попробовать их заменить.
Внимание! Для работы схемы в нормальном режиме номинальное рабочее напряжение конденсатора должно быть 1,2 кВ.
Как проверить дроссель люминесцентного светильника
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуВажно! О неисправности дросселя можно судить до того, как светильник перестал загораться. После включения внутри колбы начинают бегать «змейки» или сама лампа начинает мигать.
Неисправность дросселя может выражаться в обрыве обмотки или межвитковом замыкании.
Определять обрыв нужно мультиметром, экран прибора или стрелка (в зависимости от типа прибора) в режиме измерения сопротивления покажет бесконечность.
При замыкании витков, показания будут близки к «0». Узнать перегоревший дроссель можно по запаху гари, на корпусе появляются коричневые пятна, свидетельствующие о значительном перегреве прибора.
Неисправный дроссель не ремонтируется и подлежит замене. При установке нового следует обращать внимание на маркировку. Она должна соответствовать по мощности применяемым лампам.
Как проверить стартер
О неисправности стартера можно судить по тому, что при подаче напряжения на светильник он мигает, но не загорается.
Если стартер не подключен в схеме светильника, его контакты разомкнуты. Проверить его исправность мультиметром не получится. Можно собрать схему, в которой стартер подключен последовательно с лампой накаливания, имеющей мощность 60 Вт. Если стартер исправен, то лампа будет гореть и через определенный промежуток времени будут появляться всплески яркости.
Рисунок 5. Схема проверки стартера.Как проверить емкость конденсатора тестером
Конденсатор, установленный между проводами источника питания, непосредственно на работоспособность светильника не влияет. Он необходим для компенсации реактивной мощности дросселя. Отсутствие или неисправность конденсатора приводит к тому, что коэффициент полезного действия всей схемы составляет около 40 – 50%. Это мало. При исправном конденсаторе КПД стремиться к 90%, снижая энергопотребление.
Для ламп до 40 Вт номинал конденсатора должен быть в пределах 4,5 мкФ. Снижение емкости приведет к уменьшению КПД, увеличение может привести к миганию.
Проверить исправность конденсатора можно приборами, имеющими такую функцию.
Включение люминесцентной лампы без дросселя
С течением времени люминесцентные лампы даже в самых современных светильниках перегорают. Однако, их работа может быть продлена. В схемах подключения перегоревших ламп без дросселя и стартера используется постоянное напряжение. Самый простой тип схемы для такого подключения – двухполупериодный выпрямитель с удвоением напряжения. Со временем световой поток ослабнет. Для его восстановления необходимо перевернуть лампу в светильнике (поменять полюса подключения).
к содержанию ↑Схема подключения перегоревших ламп
Рисунок5. Двухполупериодный выпрямитель-удвоитель.В момент запуска напряжение на конденсаторах и диодах поднимается до 900 В. На такие номиналы и следует подбирать радиоэлектронные элементы.
к содержанию ↑Утилизация
Люминесцентные лампы наполнены парами ртути. Их утилизация совместно с бытовыми отходами запрещена. Все юридические лица должны иметь договора на утилизацию с лицензированными организациями.
lampaexpert.ru
Проверка люминесцентной лампы с помощью мультиметра, возможные неисправности ламп
Несмотря на появление светодиодов, люминесцентные светильники остаются распространённым источником света. При его отсутствии появляется необходимость проверить лампу мультиметром.
Люминесцентные лампы
Устройство люминесцентной лампы
Корпусом ЛЛ служит стеклянная трубка диаметром 38, 26, 16 или 12 мм. Она может быть прямой или иметь форму кольца, буквы «U» или какой-то другой. Устройство светильника от этого не меняется. В концах колбы находятся впаянные вывода с нитями накала, аналогичными нитям ламп накаливания. Для компактности им придаётся биспиральная форма: спираль из вольфрамовой проволоки скручивается в спираль ещё раз. Встречается триспиральная намотка, при которой спираль мотается из биспирали. С наружной стороны нити припаиваются к штырькам цоколя G5 или G13.
Воздух в колбе откачивается и заменяется инертным газом с добавлением капли (30мкГ) ртути или амальгамы – сплава ртути с висмутом, индием или другими металлами.
Нити накала для лучшей эмиссии электронов покрываются смесью окислов бария, стронция или кальция, иногда с добавкой тория.
Маркировка люминесцентных ламп, так же, как и маркировка ламп накаливания, указывает на мощность и рабочее напряжение светильника. По расшифровке марки определяется также цветовая температура, тип цоколя и другие параметры.
Обозначение люминесцентных ламп на схеме отображает её конструкцию – запаянная колба с нитями накала на концах.
Устройство люминесцентной лампы
Принцип работы люминесцентной лампы
При подаче на противоположные концы колбы высокого напряжения между ними появляется электрический разряд. Ток, текущий при этом между электродами, необходимо ограничивать. Для этого используются дроссель или электронная схема.
Большая часть энергии выделяется в виде ультрафиолетового излучения. Внутри трубка покрыта слоем люминофора, преобразующего ультрафиолет в видимый свет. От его состава зависит оттенок или цветовая температура света.
Справка. Кварцевые лампы в медучреждениях и соляриях – это люминесцентные светильники, в колбах которых отсутствует люминофор.
Дуговой разряд, протекающий через трубку ЛЛ, поддерживается термоэлектронной эмиссией электронов с поверхности нитей накала. Для появления этой эмиссии нити разогреваются протекающим через них током, или разряд инициируется высоким напряжением. После начала работы электроды подогреваются высоким напряжением.
Принцип работы ЛЛ
Неисправности
Рассмотрим, как работает люминесцентный светильник, возможные неисправности и способы их устранения.
Есть три основных принципа действия ЛЛ.
Схема с дросселем и стартёром
Это самый распространенный принцип работы люминесцентного светильника. В этой схеме токоограничивающий дроссель включён последовательно с нитями накала. Стартёр на время запуска включает нити накала последовательно с дросселем и периодически разрывает цепь. Если в момент отключения стартёра происходит запуск лампы, то на ней падает напряжение, и повторного включения не происходит.
Возможные неисправности люминесцентных светильников, собранных по этой схеме:
- Обрыв дросселя. ЛЛ при этом не светится совсем;
- Неисправен стартёр. Колба не светится, периодически вспыхивает, но не запускается, или светятся только концы. Проверяется заменой стартёра или кратковременным закорачиванием его изогнутой проволокой. В некоторых случаях включенный светильник загорается после выкручивания стартёра;
- Не работает ЛЛ. Внешние признаки аналогичны неисправному стартёру.
Дроссельная схема
Интересно. В старых люминесцентных светильниках вместо стартёра устанавливалась кнопка, и запуск лампы производился вручную.
Умножитель напряжения
Для быстрого запуска светильника и применения лампочек с перегоревшей нитью накала используется умножитель напряжения. В этой схеме ток, текущий через светильник, ограничивается первой парой конденсаторов, а остальные – повышают напряжение только на время запуска, пока не произойдёт разряд через колбу.
Недостаток этой схемы в том, что на электроды подаётся постоянное напряжение, и происходит перенос покрытия с одной спирали на другую. Поэтому при утрате яркости трубку необходимо снять, развернуть и установить обратно.
Для уменьшения пульсаций вместо резистора параллельно колбе устанавливается фильтр из дросселя, оставшегося после переделки светильника и электролитического конденсатора большой ёмкости с рабочим напряжением 300В. Высокое напряжение на электродах присутствует несколько миллисекунд, в период запуска, и пробой конденсатора произойти не успевает. Такая схема много лет работала у меня над столом, пока не была заменена на плату из энергосберегающей лампочки.
Схема с умножителем напряжения
Электронный ПРА
В современных светильниках устанавливается электронная схема для запуска. При выходе из строя её элементов или перегорании нитей накала светильник не загорается. Для проверки необходимо заменить лампочку. Если свет всё равно отсутствует, то неисправен электронный ПРА.
Схема с электронным ПРА
Интересно. Плата в энергосберегающих лампах, устанавливаемых в люстрах, идентична ПРА в люминесцентных светильниках. Её можно установить вместо вышедшей из строя или при модернизации старого осветительного прибора. Единственное условие – мощность энергосберегающей лампочки должна быть не меньше люминесцентной.
Как проверить люминесцентную лампу
Есть два вида неисправности ЛЛ:
- Потеря эмиссии электронов нитями накала. Проявляет себя морганием или свечением только концов колбы. Проверить это можно только установкой в исправный прибор освещения или заменой на заведомо исправную лампочку;
- Обрыв нити накала. В этом случае свет отсутствует полностью. Проверяется такая неисправность тестером или мультиметром, включенным на проверку целостности сети или измерение сопротивления. Оно составляет несколько Ом, в зависимости от модели устройства.
Знание того, что такое и как работают люминесцентная лампа и светильник с люминесцентными лампами, а так же, как проверить их исправность, необходимо при ремонте освещения и осветительной аппаратуры.
Видео
amperof.ru
Люминесцентная лампа не зажигается. Как проверить люминесцентную лампу мультиметром — пошаговая инструкция
Сегодня я расскажу об одной проблеме, которая связана с двумя вещами - люминесцентными лампами и выключателями с подсветкой. В ыключатели с подсветкой — действительно функциональная и удобная вещь. Нет необходимости шарить в темном коридоре в поисках выключателя. При этом в качестве элемента индикации используются неоновая лампа или светодиод последовательно с резистором. При выключенном выключателе загорается подсветка, а это может означать только одно — через цепь течет ток.
Почему мигает выключенная энергосберегающая лампа
Проблем никаких не было, пока не появились в большом количестве энергосберегающие компактные люминесцентные лампы с электронной схемой зажигания. В таких лампах схема питания устроена таким образом, что даже если один провод (как правило, фазный) разорван выключателем с подсветкой, на конденсаторе фильтра может накапливаться заряд.
В результате напряжение возрастет настолько, что его хватит для запуска схемы, и лампа на мгновение зажжется. Это проявляется как периодическое моргание энергосберегающей лампы после выключения . Такой же эффект может проявляться и в светодиодных лампах.
Сразу сделаю оговорку, что моргание может проявляться не только из-за подсветки, но и вследствие других причин — плохая изоляция проводки, неисправность лампы, очень длинный провод от выключателя до лампы. Например, при разомкнутом фазном проводе на всём своем протяжении от лампы до контакта выключателя этот провод представляет собой антенну. И если провод длинный (20-30 и более метров), и рядом проходит другой провод, на котором есть фаза, то на висящем проводе наводится фаза, мощности которой хватит для вспышек люминесцентной или светодиодной лампы.
Как устранить мигание выключенной энергосберегающей лампы
Чтобы устранить моргание энергосберегающей лампы (и люминесцентных ламп с электронным балластом вообще), обычно предлагают несколько способов. Рассмотрим подробно каждый и выберем лучший.
1. Размыкать обязательно фазный провод.
Это и так надо делать обязательно в любом случае. Как правило, это условие выполняется везде, за исключением, пожалуй, проводки в старых домах. Однако, помогает это редко, так как причина моргания кроется в другом. Те, кто это советуют, должны понимать, что в 90% такая переделка не помогает. И лампа продолжает моргать. А ведь для этого надо переделать подключения в распределительной коробке. А там — старый алюминий 2. Просто перекусить или выкинуть подсветку в выключателе.Это не наш метод! Хотя самый быстрый и простой. В большинстве случаев так и делают. Но тогда зачем устанавливать выключатель с подсветкой? Кстати, бывали случаи, что выключенная лампа продолжала мигать и после выкусывания подсветки.
3. Проложить отдельный нулевой провод в выключатель для питания подсветки. Способ хороший, и работает безотказно. Минусы есть. Во-первых, дополнительный провод, который надо предусмотреть заранее. Второе — подсветка постоянно горит, хотя возможно это и несущественно. Кроме того, дополнительная изолированная скрутка в выключателе…
4. Параллельно моргающей люминесцентной лампочке вкрутить обычную лампу накаливания.
Способ хорошо действует, но его можно применить только когда в светильнике или люстре более одной лампочки, что является существенным недостатком.
Рассмотрим этот способ поподробнее. Несмотря на существенный недостаток, у этого способа есть преимущества, которые устраняют (компенсируют) два недостатка энергосберегающих ламп.
Первое — задержка включения энергосберегающей лампы . Свет от такой лампы появляется через некоторое время, затем лампа разгорается, и это проявляется всё заметнее со старением лампы. Многих это раздражает. Лампа накаливания включается мгновенно и сразу выходит на номинальный уровень яркости. Есть положительный эффект.
Второе — не совсем приятный цвет свечения энергосберегающей лампы . При добавлении лампы накаливания общий спектр освещения становится привычнее и приятнее. Кстати, при производстве ювелирных изделий и других тонких работах применяется именно такой комбинированный способ освещения — глаза устают гораздо меньше.
5. Параллельно лампе включить шунтирующий элемент (резистор или конденсатор), через который будет протекать ток, достаточный для горения подсветки.С технической точки зрения — способ фактически повторяет описанный в пункте 4 — шунтирование лампы лампой накаливания. Предлагают использовать конденсатор или резистор. Номиналы конденсатора: емкость от 0,01 до 0,1 мкФ, напряжение — не ниже 400 В. Номинал резистора — сопротивление от 200 кОм до 1 МОм. Конденсатор по сравнению с резистором имеет большие габариты и цену.
От чего такой разброс сопротивлений шунтирующего лампу резистора? Чем сильнее проявляется проблема (например, рядом на большом протяжении параллельно проходит силовая линия, которая дополнительно наводит напряжение), тем меньше должно быть сопротивление.
Из всех этих способов я могу уверенно рекомендовать последний. Работает с любыми типами ламп, с любым подключением фазы.
Для того, чтобы энергосберег
levevg.ru
как проверить люминесцентную лампу мультиметром
Люминесцентные лампы и светильники на их основе широко распространены. Благодаря особенностям конструкции они позволяют, по сравнению с лампами накаливания, получить одинаковое количество света при более экономичном потреблении электроэнергии. В условиях постоянного повышения стоимости электроэнергии, вопрос экономии достаточно актуален. Как проверить цифровым измерительным прибором мультиметром люминесцентную лампу при определении неисправности?
Как устроен люминесцентный светильник
Стеклянная загерметизированная трубка из тонкого прозрачного стекла, на стенки которой внутри нанесен люминофор тонким слоем. Она заполнена смесью инертного газа с незначительным количеством ртутных паров. На концах колбы внутри баллона размещены маленькие нагревательные спирали. Разогрев нити током вызовет тлеющий газовый разряд смеси, сопровождаемый свечением газа в ультрафиолетовом спектре, не видимом глазу. Это свечение вызывает излучение люминофорным слоем света в видимом спектре. Химический состав люминофора определяет цвет полученного от люминесцентного источника света.
Кроме тлеющего разряда в источниках дневного света может использоваться дуговой разряд. Ртутная дуговая лампа обладает очень высокой светоотдачей. Спектр свечения не приятен для глаз, поэтому ДРЛ в основном используются в уличном освещении.
Принцип работы лампы
До проверки исправности лампы дневного света нужно представлять ее работу. Основной принцип работы люминесцентной лампы заключается в использовании тлеющего разряда, возникающего в газовой смеси от подачи повышенного напряжения. Ток потребления при таком разряде маленький. Для реализации этого в светильнике, кроме люминесцентной трубки, необходимо наличие пускорегулирующего устройства, состоящего из дросселя и стартера, или их электронных аналогов в современных моделях – ЭПРА.
Дроссель это балласт в виде катушки провода на сердечнике. Элемент обладает большой индуктивностью и включен в цепь последовательно. При подаче питания создает пусковой бросок напряжения, необходимый для обеспечения возникновения разряда. В момент начала ионизации газа в трубке возникает очень большой ток. Для ограничения его в момент пуска предназначен дроссель. После пуска, за счет самоиндукции, он обеспечивает питание спиралей — электродов повышенным (600-1000 В), поддерживающим тлеющий разряд, напряжением. Также устраняет мерцание и помехи в питающую сеть.
Стартер представляет собой неоновую лампу, напряжение зажигания которой ниже, чем напряжение питания, но выше рабочего напряжения люминесцентного светильника. Его задача – пропустить ток в момент пуска, и обеспечить прохождение тока через спирали подогрева. После разогрева электродов, возникновения разряда в трубке с засвечиванием люминофора, напряжение на стартере уменьшится, разряд в неоновой лампочке стартера исчезнет, обеспечивая разрыв цепи прохождения тока по спиралям.
Электрическая схема светильника выглядит так: провод питающей сети 220 В соединен с выводом нити накаливания на одном конце лампы. Один из выводов спирали на другом конце трубки, через последовательно включенный дроссель, соединен со свободным выводом сети. Параллельно незадействованным выводам спиралей подключен стартер.
К проводам сети подключен конденсатор, уменьшающий помехи проникающих в сеть питания при работе светильника.
После включения питания светильника, ток сети через дроссель и спираль попадает на стартер. Ко второму выводу стартера ток попадает через другую спираль. Получившееся напряжение, приложенное к стартеру, включает его и через спирали, расположенные на концах трубки, течет ток. Нити разогреваются, возникает ионизация газа с тлеющим разрядом по объему лампы и последующее загорание люминесцентной лампы.
Напряжение между спиралями падает, параллельно включенный им стартер разрывает пусковой ток и больше в работе не участвует. Лампа светиться за счет повышенного напряжения, приложенного к концам трубки.
Рабочий ток светильника меньше пускового и гораздо меньше тока лампы накаливания с одинаковой мощностью, чем обеспечивает экономичность ламп дневного света.
С чего начинать проверку работоспособности лампочки мультиметром
При помощи мультиметра нужно проверить обрыв нитей накала. Мультиметр установить в режим прозвонки или измерения сопротивлений на малом пределе. Проверяем спирали с обоих концов трубки. В режиме прозвонки, при исправных спиралях, будет слышен зуммер. В режиме измерения, на индикаторе мультиметра при исправности будет светиться 5-10 Ом. Перегорание спирали нити подогрева — это самая распространенная причина отказа светильника дневного света и легко выявляется проверкой мультиметром.
Как протестировать дроссель лампы дневного света мультиметром
Для проверки берем мультиметр в режиме прозвонки или измерения маленького сопротивления и замеряем дроссель. Зуммер или показания индикатора укажут на наличие или отсутствие обрыва провода внутри дросселя.
Проверить изоляцию на пробой изоляции, нужно выставить мультиметр в режим измерения сопротивления на максимальном пределе. Индикатор мультиметра должен показать обрыв при касании любого из выводов и металлического корпуса.
Прозвонка стартера
Тестирование стартера мультиметром заключается в проверке неоновой лампочки на внутреннее замыкание. Для этого снимаем корпус и мультиметром становимся на один вывод лампы любым щупом. Вторым проводом мультиметра касаемся другого вывода неонки. Мультиметр не должен показать сопротивления.
Испытать работоспособность стартера можно без мультиметра. Вытащить стартер из гнезда без нарушения остальной схемы. Включить питание. Соблюдая осторожность и убедившись в хорошей изоляции инструмента, кратковременно закоротить контакты гнезда стартера. Лампа светильника должна загореться при исправности всех остальных элементов схемы.
vseotoke.ru
Как проверить дроссель - 5 причин неисправности балласта ламп дневного света. Проверка ПРА и ЭПРА отличия.
Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.
Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?
Для чего нужен дроссель
Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.
Вот так она выглядит в разрезе.
В схемах балласт нужен для трех функций:
- контроля тока, чтобы он не превышал номинала
- образование за счет индуктивности кратковременного импульса повышенного напряжения
- сглаживания возможных пульсаций в сети 220В
Подключается он последовательно, а параллельно ему монтируется стартер.
Стартер необходим для поджига лампы.
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
- подача 220В из розетки и замыкание контактов стартера
- разогрев спиралей электродов
- размыкание контактов стартера
- подача высоковольтного импульса от дросселя
- образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
- сама лампочка
- стартер
- дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Как проверить дроссель ПРА без мультиметра
Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.
О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.
Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.
В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.
Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.
Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.
- если не горит совсем – в балласте обрыв, дроссель неисправен
- горит ярко – в балласте межвитковое короткое замыкание
- моргает или светит в половину накала – дроссель исправен
Проверка балласта ПРА мультиметром
Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.
Повреждение дросселя может быть пяти видов:
- замыкание разных обмоток
- замыкание витков в одной обмотке
- неисправность магнитопровода
- пробой на корпус
Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.
Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.
При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.
Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.
Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:
а на выходе свечения нет:
то считайте что обрыв вы нашли.
Замыкание обмоток
Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.
Но изоляция может высохнуть или нарушиться.
Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.
Межвитковое замыкание
Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.
Найти такое повреждение очень трудно, даже при помощи мультиметра.
Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.
Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.
Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:
- мощностью на 20Вт - сопротивление от 55 до 60 Ом
- мощностью на 40Вт – сопротивление от 24 до 30 Ом
- мощностью на 80Вт – сопротивление от 15 до 20 Ом
Магнитопровод
Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.
При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.
Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.
Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.
Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.
Пробой на корпус
О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.
Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.
Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.
Повреждение электронного дросселя
А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.
Все современные модели выпускаются с электронными дросселями без стартеров.
ЭПРА расшифровывается как - электронная пуско-регулирующая аппаратура.У нее множество электронных компонентов напаяны на плату и помещены в один корпус.
Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.
Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.
Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.
Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.
Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.
Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.
И сравнивайте с теми фактическими замерами, которые у вас получились.
В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.
Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.
svetosmotr.ru
Люминесцентная лампа представляет собой газоразрядный источник света, световой поток которого формируется в основном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора. При включении лампы в парах ртути, которыми заполнена колба, происходит электрический разряд и образовавшееся при этом ультрафиолетовое излучение воздействует на покрытие из люминофора. При этом происходит преобразование частот невидимого ультрафиолетового излучения (185 и 253,7 нм) в излучение видимого спектра. Подобные лампы в наше время широко используются для общего освещения производственных и бытовых площадей самых различных народнохозяйственных и жилищных объектов. По сравнению с традиционными лампами накаливания они имеют лучшую световую отдачу и значительно больший срок службы и составляют, поэтому, серьёзную конкуренцию привычным для нас осветительным приборам. Типовые неисправности светильников с люминесцентными лампами.
Трубчатые лампы имеют двухштырьковые следующие типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние - 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние - 5 мм) для ламп диаметром 16 мм. Особенность устройства компактных люминесцентных ламп в том, что трубка делается специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначенные для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовой патрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины. Люминесцентные лампы требуют работы специального устройства - пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА. Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА). Достоинства: По сравнению с лампами накаливания экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов. Недостатки: При температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло. Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование типов таких ламп, означают:
Например, ЛДЦ-18 - лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт. Схемы подключения люминесцентных лампДля подключения люминесцентной лампы в осветительную электросеть квартиры и офиса необходимо использовать специальную пускорегулирующую аппаратуру (ПРА). На практике применяются два различных вида ПРА. Это - электронный вид (ЭПРА или «электронный балласт»), представляющий собой электронную схему запуска лампы, и электромагнитный - ЭМПРА, состоящий из дросселей и стартёров. Последний вид пускорегулирующей аппаратуры получил наибольшее распространение, а схема подключения с помощью ЭМПРА (стартёрная схема подключения) выглядит следующим образом. где:
Наиболее часто используются светильники, содержащие две последовательно подключённые лампы. Для включения в осветительную сеть двух люминесцентных ламп используется следующая схема: А – для люминесцентных ламп мощностью 20 (18) ВТ В – для люминесцентных ламп мощностью 40 (36) ВТ При использовании схемы «А» следует учесть, что мощности дросселя LL должна хватать для работы с двумя лампами, а стартёры должны иметь рабочее напряжение 127 вольт. Светильник с люминесцентными лампами работает следующим образом - трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды, ток, текущий через дроссель и стартер значительно увеличивается, нагревает биметаллическую пластину стартера, электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение, его энергии накопленной хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе, пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека. Дроссель почти не потребляет энергию, энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода, чтобы разгрузить сеть используется конденсатор С, обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора понижает КПД лампы, без него КПД лампы 50-60%, с конденсатором С - 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех. Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером. Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.
|
malahit-irk.ru
Как определить и устранить неисправность люминесцентной лампы
В силу более сложной конструкции, определить неисправность люминесцентной лампы несколько труднее, чем у традиционной лампы накаливания. Сложно, но возможно.
Устройство и принцип работы люминесцентной лампы
Люминесцентная лампа состоит из стеклянного баллона (1), наполненного инертным газом и парами ртути.
На концах лампы расположены катоды (3) – биспиральные вольфрамовые электроды, соединенные с контактными штырями (5), зафиксированными на стеклянной колбе при помощи цоколя (4).
В упрощенном виде процесс рабочий процесс люминесцентной лампы выглядит следующим образом: на катоды лампы благодаря стартеру подается высоковольтный импульс, продуцируемый дросселем.
Нагретый катод начинает испускать поток электронов, двигающихся с высокой скоростью. В момент столкновения электронов с атомами ртути происходит ионизация газа, создавая между катодами лампы электрический разряд.
Выделяемый при этом поток света ультрафиолетового диапазона попадает на слой люминофора (2), которым покрыта внутренняя часть стеклянного баллона лампы. Происходит преобразование невидимого человеческому глазу ультрафиолетового излучения в свечение, находящееся в видимой части спектра.
После образования внутри лампы электрического разряда контакты стартера размыкаются и на катоды лампы подается рабочее напряжение, необходимое для поддержания тлеющего разряда.
Неисправности люминесцентных ламп и способы их устранения
Описание неисправности | Причина | Способ устранения |
Лампа не зажигается | Обрыв провода, отсутствие контакта, неисправность лампы или стартера, низкое напряжение в сети | Заменить лампу, проверить напряжение на ее контактных штырях |
Тусклое свечение по краям лампы | Неисправность стартера | Заменить стартер |
Мерцающее оранжевое свечение на краях лампы | Попадание в колбу лампы воздуха | Заменить лампу |
Неравномерное заполнение разрядом пространства колбы лампы, свечение в виде змейки на некоторых участках лампы | Неисправность дросселя | Заменить дроссель |
Через несколько часов работы концы лампы темнеют и она перестает зажигаться | Неисправность дросселя | Заменить дроссель |
Лампа периодически то зажигается, то гаснет | Неисправность лампы или стартера | Заменить лампу или стартер |
Лампа зажигается, но горит тускло | Неисправность дросселя, недостаточное количество ртути в лампе | Заменить дроссель или лампу |
При включении перегорают спирали лампы, концы колбы чернеют | Пробой изоляции дросселя | Заменить дроссель |
Чтобы впустую не тратить время на поиск неисправности в люминесцентной лампе, знайте, что рабочая исправная лампа может не зажигаться из-за колебаний напряжения в питающей сети более 7% или температуры окружающего воздуха ниже 100 С.
Удачи вам! Пусть у вас все получится!
Понравилась статья? Поделитесь ею в соцсетях и поставьте оценку
Загрузка...Не спешите уходить! Это может быть вам полезным
goodmaster.com.ua