ул.Симферопольская
дом 5, офис 9
Корзина
Корзина пуста
Сделай сам своими рукамиО бюджетном решении технических, и не только, задач. Как намотать трансформатор
Как рассчитать и намотать трансформатор своими руками? FAQ
Эта тема возникла в связи с написанием статьи о самодельном усилителе низкой частоты. Хотел продолжить повествование, рассказав о блоке питания и добавив ссылку на какую-нибудь популярную статью о перемотке трансформаторов, но не нашёл простого понятного описания. Что ж поделаешь, всё нужно делать самому. https://oldoctober.com/
В этом опусе я расскажу, на примере своей конструкции, как рассчитать и намотать силовой трансформатор для УНЧ. Все расчёты сделаны по упрощённой методике, так как в подавляющем большинстве случаев, радиолюбители используют уже готовые трансформаторы. Статья рассчитана на начинающих радиолюбителей.
Самые интересные ролики на Youtube
Те же, кто хочет углубиться в расчёты, может скачать очень хорошую книжку с примерами полного расчёта трансформатора, ссылка на которую есть в конце статьи. Также в конце статьи есть ссылка на несколько программ для расчёта трансформаторов.
Близкие темы.
Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.
Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?
Оглавление статьи.
- Как определить необходимую мощность силового трансформатора для питания УНЧ?
- Какую схему питания УНЧ выбрать?
- Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
- Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
- Типы магнитопроводов силовых трансформаторов.
- Как определить габаритную мощность трансформатора?
- Где взять исходный трансформатор?
- Как подключить неизвестный трансформатор к сети?
- Как сфазировать обмотки трансформатора?
- Как определить количество витков вторичной обмотки?
- Как рассчитать диаметр провода для любой обмотки?
- Как измерить диаметр провода?
- Как рассчитать количество витков первичной обмотки?
- Как разобрать и собрать трансформатор?
- Как намотать трансформатор?
- Как закрепить выводы обмоток трансформатора?
- Как изменить напряжение на вторичной обмотке не разбирая трансформатор?
- Программы для расчёта силовых трансформаторов.
- Дополнительные материалы к статье.
Страницы 1 2 3 4
Как определить необходимую мощность силового трансформатора для питания УНЧ?
Для колонок описанных здесь, я решил собрать простой усилитель мощностью 8-10 Ватт в канале, на самых дешёвых микросхемах, которые только удалось найти на местном радиорынке. Ими оказались – TDA2030 ценой всего по 0,38$.
Предполагаемая мощность в нагрузке должна составить 8-10 Ватт в канале:
10 * 2 = 20W
КПД микросхемы TDA2030 по даташиту (datasheet) – 65%.
20 / 0,65 = 31W
Я подобрал трансформатор с витым броневым магнитопроводом, так что, КПД можно принять равным – 90%.https://oldoctober.com/
31 / 0,9 = 34W
Приблизительно оценить КПД трансформатора можно по таблице.
Мощность трансформатора (Вт) | КПД трансформатора (%) | |||
Броневой штампованный | Броневой витой | Стержневой витой | Кольцевой | |
5-10 | 60 | 65 | 65 | 70 |
10-50 | 80 | 90 | 90 | 90 |
50-150 | 85 | 93 | 93 | 95 |
150-300 | 90 | 95 | 95 | 96 |
300-1000 | 95 | 96 | 96 | 96 |
Значит, понадобится сетевой трансформатор мощностью около 30-40 Ватт. Такой трансформатор должен весить около килограмма или чуть больше, что, на мой взгляд, прибавит моему мини усилителю устойчивости и он не будет «бегать» за шнурами.
Если мощность трансформатора больше требуемой, то это всегда хорошо. У более мощных трансформаторов выше КПД. Например, трансформатор мощностью 3-5 Ватт может иметь КПД всего 50%, в то время как у трансформаторов мощностью 50–100 Ватт КПД обычно около 90%.
Итак, с мощностью трансформатора вроде всё более или менее ясно.
Теперь нужно определиться с выходным напряжением трансформатора.
Вернуться наверх к меню
Какую схему питания УНЧ выбрать?
Для питания микросхемы, я решил использовать двухполярное питание.
При двухполярном питании не требуется бороться с фоном и щелчками при включении. Кроме того, отпадает необходимость в разделительных конденсаторах на выходе усилителя.
Ну, и самое главное, микросхемы, рассчитанные на однополярное питание и имеющие соизмеримый уровень искажений, в несколько раз дороже.
Это схема блока питания. В нём применён двухполярный двухполупериодный выпрямитель, которому требуются трансформатор с двумя совершенно одинаковыми обмотками «III» и «IV» соединёнными последовательно. Далее все основные расчёты будут вестись только для одной из этих обмоток.
Обмотка «II» предназначена для питания электронных регуляторов громкости, тембра и стереобазы, собранных на микросхеме TDA1524. Думаю описать темброблок в одной из будущих статей.
Ток, протекающий через обмотку «II» будет крайне мал, так как микросхема TDA1524 при напряжении питания 8,5 Вольта потребляет ток всего 35мА. Так что потребление здесь ожидается менее одного Ватта и на общей картине сильно не отразится.
Вернуться наверх к меню
Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
Этот расчёт необходимо сделать, чтобы обезопасить микросхему от пробоя.
Максимальное допустимое напряжение питания TDA2030 – ±18 Вольт постоянного тока.
Для переменного тока, это будет:
18 / 1,41 ≈ 12,8 V
Падение напряжения на диоде* выпрямителя при незначительной нагрузке – 0,6 V.
12,8 + 0,6 = 13,4 V
*Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.
При повышении напряжения сети, напряжение на выходе выпрямителя увеличится. По нормативам, напряжение сети должно быть в пределах – -10… +5% от 220-ти Вольт.
Уменьшаем напряжение на вторичной обмотке трансформатора для компенсации повышения напряжения сети на 5%.
13,4 * 0.95 ≈ 12,7 V
Мы получили значение максимального допустимого напряжения переменного тока на вторичной обмотке трансформатора при питании микросхемы TDA2030 от двухполярного источника без стабилизации напряжения.
Проще говоря, это чтобы напряжение не вылезло за пределы ±18V и не спалило микруху.
Те же значения для этой линейки микросхем.
Тип микросхемы | На выходе трансформатора (~В) | Напряжение питания max (±В) |
12,7 | 18 | |
TDA2040 | 14 | 20 |
TDA2050 | 17,4 | 25 |
Вернуться наверх к меню
Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
Этот расчёт необходимо сделать, чтобы оценить максимальную мощность на нагрузке и ограничить её путём снижения напряжения, если она выйдет за допустимые пределы для данного типа микросхемы или нагрузки.
Под нагрузкой напряжение переменного тока на вторичной обмотке понижающего трансформатора может уменьшиться.
12,7 * 0.9 ≈ 11,4V
Падение напряжения на диоде* выпрямителя резко возрастёт под нагрузкой и может достигнуть, в зависимости от типа диода, – 0.8… 1,5V.
11,4 – 1,5 = 9,9V
*Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.
После выпрямителя получаем на конденсаторе фильтра напряжение постоянного тока:
9,9 * 1,41 ≈ 14V
Но, под нагрузкой, конденсатор не будет успевать заряжаться до максимально возможного напряжения. Поэтому, и в этом случае, исходное напряжение увеличивают на 10%.
14 * 0.9 = 12,6V
В реальности, действующее напряжение может быть и выше, а 12,6 Вольта, это тот уровень, на котором предположительно возникнет ограничение аудио сигнала. На картинке изображён эпюр напряжения на нагрузке, снятый при воспроизведении частоты синусоидального сигнала. Сигнал ограничен напряжением питания УНЧ.
При ограничении сигнала возникают сильные искажения, которые фактически и ограничивают выходную мощность УНЧ.
По даташиту, при напряжении питания ±12,6 Вольта и нагрузке 4 Ω, микросхема TDA2030 развивает синусоидальную мощность 9 Ватт. Этой мощности вполне хватит для моих скромных колонок и она не выйдет за пределы допуска для TDA2030.
Выходная мощность микросхем этой серии на нагрузке 4 Ω при использовании нестабилизированного блока питания с максимальным допустимым напряжением.
Тип микросхемы | Мощность на нагрузке (Вт) | Напряжение питания на выходе БП под нагр. (±В) |
TDA2030 | 9 | 12,6 |
TDA2040 | 22 | 14 |
TDA2050 | 18 |
Получив необходимые исходные данные, можно приступать к перемотке трансформатора.
Вернуться наверх к меню
Страницы 1 2 3 4
oldoctober.com
Как намотать сварочный трансформатор — особенности операций
Нередко при работе в квартире, на дачном участке или в гараже необходима сварка. Случается это нечасто, поэтому приобретение дорогого и громоздкого промышленного устройства нерационально.
Схема намотки сварочного трансформатора.
Многие домашние мастера делают сварочный аппарат самостоятельно. Решить эту задачу можно, если знать, как рассчитать и как намотать сварочный трансформатор — основной элемент сварочного аппарата. Широкий диапазон токов и напряжений в таком устройстве получить достаточно сложно, но обеспечить возможность выбора хотя бы нескольких значений весьма желательно.
Понятно, что воспроизвести в домашних условиях изготовленный промышленным способом аппарат достаточно сложно. Поэтому маломощное самодельное сварочное устройство может быть изготовлено по упрощенной схеме. Для таких устройств можно наметить круг приемлемых для них параметров:
- относительно небольшие размеры и вес;
- питание от осветительной сети 220 В;
- продолжительность безопасной непрерывной работы достаточна для сжигания нескольких электродов.
Немного теории
Для устойчивого и бесперебойного функционирования сварочного трансформатора должны выполняться следующие условия:
Размещение изолирующих кругов из электрокартона.
- Чтобы дуга надежно зажигалась, должно обеспечиваться рабочее напряжение порядка 55-65 В.
- Рабочий ток (зависит от сечения электрода) должен поддерживать бесперебойное существование дуги.
- Величина напряжения на дуге при сварке должна составлять 18-25 В.
- При коротком замыкании величина потребляемого тока должна возрастать не более чем на одну треть.
Для домашней электросварки обычно применяют электроды диаметром 2 (рабочий ток порядка 70 А), 3 (110-120 А) или 4 мм (140-150 А). Осознавая, что с ростом мощности увеличиваются нагрев и износ трансформатора, его вес и стоимость обмоточного провода, чаще всего на практике ориентируются максимум на «тройку». Параметр мощности трансформатора, учитывающий интенсивность его работы при сварке такими электродами, равен:
P = U * I * (П / 100)1/2 = 65 В * 120 А * 0,4472 ≈ 3488 Вт ≈ 3,5 кВт,
где П — коэффициент интенсивности, показывающий, какую часть временного промежутка (%) трансформатор работает в режиме дуги и греется. Оставшуюся часть времени он охлаждается в холостом режиме. В расчетах П можно полагать равным 20-25%.
Параметр мощности трансформатора определяет ЭДС индукции, наводимая в одном витке обмоток:
E1 = 0,55 + 0,095 * P (кВт) = 0.55 + 0.095 * 3.5 ≈ 0.88 В/виток.
Схема трансформатора с первичной и вторичной обмоткой.
Зная E1, можно легко вычислить количество витков в любой из обмоток трансформатора:
N = U / E1
Например, если первичная обмотка рассчитана на напряжение 220 В, то количество витков в ней N1 = 220 / 0.88 = 250.
Вторичная обмотка трансформатора с U2 = 60 В должна содержать N2 = 60 / 0.88 = 68 витков.
Площадь поперечного сечения стального магнитопровода трансформатора (см2) может быть рассчитана по эмпирической формуле:
S = U2 * 10000 / (4,44 * f * N2 * B) = 60 * 10000 / (4,44 * 50 * 68 * 1,5) = 26,5 см2,
где f = 50 Гц — частота тока, В = 1,5 Тл — значение магнитной индукции в сердечнике.
При других сечениях сердечника потребуется перерасчет количества витков. Зависимость практически обратно пропорциональная — если площадь сечения сердечника увеличить в k раз, количество витков, наоборот, уменьшается в k раз.
Остается рассчитать сечение проводов. Учитывая перерывы в работе самодельного сварочного трансформатора, допустимая плотность тока — 5 А/мм2. Оценка величины рабочего тока I2 уже была произведена. Произведем оценку тока, протекающего через первичную обмотку. Если учитывать потери, средняя мощность на первичной обмотке примерно в 1,35 раза больше P. В нашем примере Р1 ≈ 1,35 * 3,5 кВт ≈ 4,7 кВт. Тогда ток, протекающий через первичную обмотку I1 = P1 / U1 = 4700 Вт / 220 В ≈ 21 А.
Способы намотки обмоток сварочного аппарата на тороидальном сердечнике: 1 — равномерная, 2 — секционная, а — сетевая обмотка, б — силовая обмотка.
Рассчитаем площадь поперечного сечения проводов. Для этого делим величину тока, протекающего по обмоткам, на допустимую плотность тока. Для первичной обмотки получаем:
S1 = I1 / j = 21 А / 5 А/мм2 ≈ 4 мм2
Для вторичной обмотки:
S2 = I2 / j = 120 А / 5 А/мм2 = 24 мм2
Обмоточные провода следует брать с прочной и термостойкой изоляцией. Самой лучшей будет стеклоткань. Применение ПХВ оболочек недопустимо — расплавятся и вытекут. Вторичные обмотки удобно наматывать электроизолированной медной шиной. В случае ее отсутствия возможно использование многожильного гибкого провода.
Конструирование самодельного сварочного трансформатора
Разновидности магнитопроводов для трансформаторов
Самая важная деталь сварочного трансформатора — магнитопровод. Бывает так, что в сварочный трансформатор с успехом превращается достаточно мощный трансформатор, автотрансформатор и даже электродвигатель. Но тем не менее на практике чаще всего применяются сердечники трех типов:
- Броневые.
- Тороидальные.
- Стержневые.
Схема самодельного приспособления для обмотки трансформаторов.
В броневом сердечнике катушки располагают на центральном стержне. Площадь этого стержня S = a * b и является площадью сечения сердечника. Такое расположение обмоток обеспечивает эффективное использование окна сердечника (So = c * h), их защиту от внешних воздействий. Основным недостатком, важным именно для трансформаторов большой мощности, является то, что они быстро перегреваются, поскольку обмотки окружены сердечником, плохо проводящим тепло и затрудняющим циркуляцию воздуха.
Этот недостаток в значительной мере ослаблен при стержневой конструкции сердечника. Уменьшается толщина обмоток, сокращается расход обмоточного материала, возрастает площадь поверхности охлаждения. Вследствие этого мощные сварочные трансформаторы наиболее часто изготавливаются на основе таких сердечников. Площадь сечения магнитопровода S = a * b, площадь окна So = c * h.
Тороидальный магнитопровод представляет собой тор, то есть кольцо прямоугольного сечения. По сравнению с описанными выше, он имеет много плюсов:
- нет стыков и зазоров;
- возможно применение сплавов с более высокой магнитной проницаемостью, что позволяет уменьшить габариты и вес трансформатора, число витков в обмотках;
- низкое значение индуктивности рассеяния и, как следствие, уменьшение потерь;
- удобство и простота крепления, лучшие условия для охлаждения обмоток;
- более высокий КПД.
Схема устройства сварочного трансформатора.
Изготавливаются такие магнитопроводы из ленточной трансформаторной стали, которую сворачивают в рулон, придавая ей форму тора. Если диаметр внутреннего отверстия магнитопровода d1 (см. рис. 1б) мал и обмотки в нем не помещаются, можно отмотать часть ленты с внутренней стороны сердечника намотать ее на внешнюю. Диаметр внутреннего отверстия увеличится до d2, а внешний диаметр возрастет до D2.
После перемотки площадь сечения сердечника S2 = a2 * b несколько уменьшится по сравнению с первоначальным S1 = a1 * b. Если это нежелательно, придется подмотать ленту с другого сердечника, пока не восстановится первоначальное значение S.
Особенности изготовления обмоток для различных магнитопроводов
Обмотки при применении сердечников броневого и стержневого типа наматываются обычно на термостойкий, хорошо изолированный каркас. Термостойкая изоляция проводов будет, конечно, дороже обычной, но зато гарантирует от пробоя обмоток в результате перегрева. Каждый слой проводки изолируется несколькими прослойками эскапоновой лакоткани, а лишь затем намотка продолжается.
Типы обмоток трансформаторов.
Различают две разновидности устройства обмоток:
- Цилиндрические, в которых одни обмотки намотаны поверх других. Электромагнитное взаимодействие между катушками жесткое, для нормальной сварки необходим дроссель или балластный реостат, что усложняет изготавливаемое устройство.
- Дисковые, намотанные в отдельных, изолированных друг от друга секциях. Характеризуются отчетливо выраженным электромагнитным рассеиванием. Особенно сильно оно у трансформаторов со стержневым сердечником и обмотками, разнесенными на противоположные плечи магнитопровода. Балластная нагрузка не нужна, но и потери при такой конструкции возрастают. Самодельные устройства чаще всего изготавливаются по такой схеме.
Готовые катушки стягиваются и изолируются по всей наружной поверхности киперной лентой, пропитываются масляно-битумным, эскапоновым или кремнийорганическим лаком и просушиваются при температуре около 100о С.
Изготовить трансформатор на тороидальном сердечнике заметно труднее. Объясняется это тем, что расположить обмотки на торе и намотать их весьма непросто. Можно рекомендовать использование такой последовательности операций:
- Обмотать сердечник хлопчатобумажной изолентой.
- На самодельный челнок намотать провод для обмотки.
- Челноком сквозь отверстие в торе наматывается обмотка, аккуратными движениями прижимается каждый виток. Витки равномерно распределяются по поверхности магнитопровода.
- После каждого заполненного слоя наматывается прослойка изоляции (лучше лакоткани).
- Наматывается следующий слой обмотки.
- После окончания намотки первичной обмотки и ее дополнительной изоляции поверх нее наматывается вторичная обмотка, но без использования челнока.
- После окончания намотки вторичной обмотки она стягивается киперной лентой, пропитывается лаком и просушивается.
Изготовленные в соответствии с приведенными рекомендациями трансформаторы могут служить основой недорогого, но достаточно эффективного устройства для сварки в домашних условиях.
Они не лишены недостатков, но просты и надежны в эксплуатации, не исключена возможность их дальнейшего совершенствования.
moyasvarka.ru
намотка трансформаторов | Электрознайка. Домашний Электромастер.
Настоящая статья является продолжением статей:
— «Как рассчитать силовой трансформатор»;— «Как изготовить каркас для Ш – образного сердечника.»
Намотку обмоток каркаса трансформатора на Ш-образном сердечнике, нужно производить на намоточном станке, оборудованном счетчиком оборотов и специальным приспособлением для крепления каркаса и бабины с проводом. Но, как правило, под рукой такого станка нет.
Используем для намотки обычную ручную дрель. Перед намоткой нужно снять и одеть каркас на оправку несколько раз, чтобы каркас свободнее сидел на оправке. Далее вновь одеваем каркас на оправку, подкрепляем его двумя фанерными дощечками(дощечки нужны для того, чтобы щечки каркаса при намотке провода не распирало в стороны), стягиваем болтом или шпилькой и закрепляем в патроне ручной дрели. Дрель нужно закрепить в настольные тиски.
Нужно рассчитать передаточное число оборотов патрона и ручки дрели. Для этого посчитаем количество оборотов патрона дрели на один оборот ручки. Или, если есть возможность, посчитать количество зубьев на обоих шестернях. Соотношение их количества и даст коэффициент пересчета n.
Например: количество зубьев на шестерне ручки 35 шт., количество зубьев на патроне – 7 шт., тогда коэффициент n = 35 / 7 = 5. При одном обороте ручки дрели на каркас наматывается 5 витков провода.
При намотке каркаса трансформатора на Ш-образном сердечнике, нужно считать не количество оборотов патрона, а количество оборотов ручки дрели, что значительно проще и удобнее. Определим количество оборотов ручки для сетевой первичной обмотки. K = 1050/5 = 210 оборотов.Чтоб намотать первичную обмотку нужно сделать 210 оборотов ручки дрели.
Один практический совет: чтоб не сбиться со счета числа оборотов при намотке катушки, после каждых 10 оборотов ручки дрели, где нибудь на бумаге нужно делать отметку — галочку.Отсчитал количество галочек равное 21 — вот и готова первичная обмотка.
В щечке каркаса необходимо сделать отверстие для выхода провода. Отверстие делается шилом в щечке, которая выходит наружу трансформатора.Эмалированный провод обмотки с помощью пайки соединяется с многожильным проводом. Место соединения прикрывается кусочком плотной бумаги как на рисунке…
Намотку катушек трансформатора на Ш-образном сердечнике, лучше всего (очень рекомендую) проводить виток к витку, прокладывая между слоями конденсаторную бумагу, для изоляции между слоями.
Ширина конденсаторной бумаги на 4-5 мм должна быть шире, чем расстояние между щечками каркаса и иметь надрезы по всей длине, как на рисунке….Причина увеличения ширины бумаги такова: при намотке витки провода прижимают бумагу, она деформируется и сужается в размере. Оголяются витки нижнего слоя, возможен межвитковый пробой между слоями.
Намотав первичную обмотку и выведя конец многожильным проводом, прокладывают 2-3 слоя бумаги или лакоткани (межобмоточная изоляция), чтобы предохранить от случайного соприкосновения провода сетевой обмотки с проводами выходной обмотки.
Мотать вторичную обмотку с применением дрели не удобно, т.к. провод вторичной обмотки толстый – диаметром 1 мм... Лучше всего вторичную обмотку мотать вручную, вынув заготовку с каркасом из патрона дрели.
Вторичная обмотка также мотается виток к витку с прокладкой бумажной полосы (такой же как и у первичной обмотки) между слоями. Количество витков вторичной обмотки на 36 вольт будет 180 витков.
Концы вторичной обмотки выводятся из каркаса самим проводом, без спайки с многожильным проводом. Можно только, для прочности, надеть на провод тонкую хлорвиниловую трубку.
После намотки вторичной обмотки снова прокладываются 2-3 слоя плотной бумаги для защиты провода от внешних повреждений. Затем готовый каркас с обмотками осторожно снимают с оправки, стараясь не повредить.
Затем собираем трансформатор полностью, вставляем пластины магнитопровода вперекрышку, с разных сторон каркаса. Сначала собираем без пластин — перемычек, так удобнее. После того как все Ш-образные пластины вставлены, вставляем пластины — перемычки.
Легкими постукиваниями молотка по торцам, подравниваем пластины на ровной площадке. Затем весь магнитопровод необходимо стянуть болтами-шпильками или обжать уголками с крепежными отверстиями.
Вот наконец и добрались мы до интересного момента – пуска своего творения — трансформатора на Ш-образном сердечнике в электрическую сеть.
Для испытания трансформатора подключим сетевой провод с вилкой (через предохранитель на 1 ампер) к первичной обмотке трансформатора.
Вольтметром переменного тока нужно проверить наличие напряжения на вторичной обмотке трансформатора. Оно должно быть 35 — 37 вольт.
Если все работы выполнены правильно, то по истечении 5-10 минут работы, трансформатор не должен нагреться. После подсоединения лампочки на 36 вольт напряжение может просесть до 33-35 вольт, это нормально.
domasniyelektromaster.ru
Как сделать тороидальный трансформатор своими руками?
Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.
Как устроен трансформатор?
Основа прибора – замкнутый магнитопровод. На него наматываются обмотки – от двух и более. При появлении на первичной обмотке переменного напряжения, в основе возбуждается магнитный поток. Он наводит на остальных обмотках переменное напряжение с аналогичной частотой.
Разница в количестве витков между обмотками определяет коэффициент изменения величины напряжения. Проще говоря, если вторичная обмотка имеет вдвое меньше витков, на ней возникнет напряжение, в два раза меньшее, чем в первичной. Мощность остается прежней, что позволяет работать с большими токами при меньшем напряжении.
Важно! Трансформатор может работать только с переменными или импульсными токами. Преобразовать постоянное напряжение таким образом невозможно.
Конструктивное исполнение различается по форме магнитопровода.
Броневой
Образует два витка магнитного поля, рассчитан на большие нагрузки. Магнитопровод разъемный, удобен в сборке – на центральный стержень надевается готовая обмотка. Недостаток – тяжелый, габаритный. Крайние и поперечные стержни магнитопровода эффективно не используются.
Стержневой
Конструкция аналогична броневому, магнитное поле одновитковое, соответственно мощность меньше. Также имеет разборную конструкцию. Эффективность использования поверхности магнитопровода не выше 40%.
Тороидальный трансформатор
Имеет самый высокий КПД. Это достигается за счет 100% использования площади магнитопровода. Поэтому, при одинаковой мощности, такие трансформаторы имеют меньшие размеры. Еще одно преимущество – за счет распределения обмоток по всей площади основы, охлаждение витков более эффективное. Это позволяет еще больше нагрузить преобразователь без превышения критической температуры. Недостаток один – такие трансформаторы сложно собирать, поскольку основа неразъемная.
Материалы для магнитопровода:
Железные основы набираются из пластин, наматываются ленточным способом, или отливаются монолитно. Наиболее эффективный материал – феррит. Чаще всего применяется именно в торах, увеличивая их КПД.
Какие бывают трансформаторы по конструкции, мы рассмотрели. При покупке готового прибора, вас мало волнует, насколько сложно его сделать.Тороидальная конструкция удобна в монтаже (занимает мало места, крепится одним винтом). Однако стоит такой прибор выше, чем стержневые или броневые преобразователи напряжения. Часто его цена перекрывает экономию от самостоятельного изготовления всей электроустановки.
Тороидальный трансформатор, как сделать своими руками?
Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.
Но тороидальный сердечник не разбирается, если пропускать через «бублик» пару тысяч (или даже сотен) витков, на перемотку уйдут месяцы. Да и вероятность повредить оболочку проволоки при таком способе довольно высока.
Важно! Намоточная медная проволока имеет защитное лаковое покрытие. Иногда тряпичное, для мощных обмоток. Дополнительная изоляция увеличивает сечение, соответственно объем обмотки вырастает втрое. Поэтому при наматывании, витки укладываются без продольного перемещения (протяжки), чтобы не повреждать изоляцию.
Чтобы не задаваться вопросами типа: «Что можно сделать из трансформатора от микроволновки?» (из него делают споттеры для точечной сварки), логичнее будет подбирать трансформатор под конкретную задачу, а не наоборот.
Если ваш электроприбор компактный, ищите тороидальный преобразователь. Кстати, в микроволновых печах применяются бронированные трансформаторы, достаточно крупного размера.
Имея представление о характеристиках собираемого блока питания, вы должны знать, как рассчитать мощность трансформатора. Получив эту важную характеристику, начинаете поиски донора. Если приобретенный трансформатор имеет заводскую этикетку, или еще лучше, паспорт изделия – вы пользуетесь этой информацией. А если у вас в руках безымянное изделие?Первый вопрос, который возникнет: «Как определить выводы трансформатора?» Необходимо произвести замеры сопротивления между контактами с помощью мультиметра. Надо найти первичную обмотку. Как правило, контакты первички не соединены с вторичными обмотками.
То есть, если прозвонка показала гарантировано обособленную обмотку, это первичка. По результатам замеров рисуем схему, и приступаем к определению коэффициентов понижения напряжения.
Важно! Вы должны точно быть уверенными в том, что перед вами именно трансформатор напряжения на 220 вольт, а не дроссель или прибор, рассчитанный на иное входное напряжение.
На контакты первичной обмотки подводим напряжение 220 вольт. Для безопасности можно ограничить ток какой-нибудь нагрузкой. Например, последовательно включить лампу накаливания мощностью 40-60 Вт. Лампа шунтируется обычным тумблером. Подключение производится через предохранитель, или бытовой удлинитель с защитным автоматом (на случай короткого замыкания).Необходимо дать поработать тору несколько минут «в холостую» с включенной лампой. Затем отключите питание, и оцените температуру устройства. Если избыточного нагрева нет – шунтируйте лампу выключателем и снова дайте время на проверку нагрева.
После этого можно приступать к составлению диаграммы напряжения на вторичных обмотках. Произведите замеры на контактах во всех возможных комбинациях. Результаты отобразите на схеме. Получив полную картину, подайте на обмотки нагрузку, соответствующую напряжению. Лучший способ – та же лампа накаливания.
Внимание! Проверка вторичных обмоток под нагрузкой – косвенный способ, как узнать мощность трансформатора.
Оценить возможности прибора можно по степени нагрева под нагрузкой. Нормальная температура – не более 45°С. То есть, сразу после отключения от сети, трансформатор можно трогать рукой без температурного дискомфорта.
Рассмотрим как производится расчет мощности трансформатора
Для начала определяем сечение основы. Магнитопровод должен не только выдержать магнитное поле определенной интенсивности, он еще рассеивает выделяемое тепло. Существует упрощенный метод исчисления площади сечения в см². Она равна квадратному корню от требуемого значения мощности в ваттах.
Это максимальное значение, реальный трансформатор должен иметь запас +50%. Иначе сердечник попадет в область магнитного насыщения, что приведет к резкому локальному нагреву. Для сердечников тороидальной формы достаточно запаса 30% от расчетной площади.
Далее необходимо знать, как определить параметры провода для обмоток, чтобы обеспечить расчетную мощность трансформатора. Первая величина – количество витков на вольт (речь идет о первичной обмотке).
Для этого воспользуемся несложной формулой: константу 60 делим на площадь сечения в см². Например, сечение магнитопровода 6 см². Значит, на каждый вольт входного напряжения, требуется 10 витков провода. То есть при питании 220 вольт, первичная обмотка будет состоять из 2200 витков.
Расчет вторичных обмоток производится в пропорции коэффициента трансформации. Если необходимо 20 вольт на выходе, при константе 10 витков на вольт, потребуется 200 витков вторичной обмотки. Это абсолютное значение, без учета потерь при нагрузке. Истинное количество витков получаем, умножив значение на 1,2.
Прежде чем намотать трансформатор, надо знать сечение провода. Минимальный диаметр проволоки рассчитывается по формуле: D=0.7*√I
D – диаметр проводника в мм
Важно! Диаметр проводника замеряется без учета толщины изолирующего лака. Его надо смыть ацетоном в месте измерения. Это актуально для проводов с малым сечением.
0,7 – установочный коэффициент
√I – квадратный корень из значения силы тока в амперах
Экономить на проводе не стоит. Меньший диаметр плохо рассеивает тепло, и обмотка может перегореть. Чем тоньше провод, тем выше сопротивление. Возможны потери мощности и снижение расчетных характеристик.
Перемотка трансформатора своими руками
Расчет произвели, параметры «донора» определили, требуется перемотка вторичной обмотки. На стержневом или бронированном трансформаторах все просто – обмотка мотается на коробочку из электротехнического картона, затем надевается на разборный магнитопровод.
А как намотать тороидальный трансформатор?
Намотка тороидального трансформатора своими руками — видео.
Есть два способа, отработанных десятилетиями.
С помощью челнока. На вилочный челнок предварительно наматываем требуемое количество проводника. Лучше рассчитать его с запасом, возможны потери от перекосов на витках.Этот способ годится в случаях, когда внутренний диаметр тора достаточно большой, а проводник тонкий и гибкий. Количество витков также имеет значение. Мотать обмотку даже в 500-700 витков вы будете очень долго.Вторая технология более прогрессивная. Намотка с помощью размыкаемого обода.Намоточный обод продевается в «дырку от бублика» и соединяется в единое кольцо. Затем на него наматывается требуемое количество проволоки. После чего проводник сматывается с обода на тороид, с одновременным его вращением для равномерной укладки.
Несмотря на кажущуюся сложность приспособления, его можно изготовить самостоятельно.
obinstrumente.ru
Как перемотать трансформатор? | Электрознайка. Домашний Электромастер.
Приложение к статье: «Как рассчитать трансформатор 220/36 вольт.» Если у вас есть силовой трансформатор с подходящим (в данном случае S = 10,4 см²) по мощности сечением сердечника, но его вторичная обмотка рассчитана на другое напряжение, можно перемотать трансформатор.
В этом случае можно не проводить такую трудоемкую работу, как намотка многовитковой первичной обмотки, а использовать уже готовую, старую первичную обмотку.
Определяем расположение первичной и вторичной обмоток на каркасе. Первичная обмотка обычно располагается на каркасе ближе к сердечнику и намотана тонким проводом с большим количеством витков. Далее нужно определить количество витков на вольт w для этого стального сердечника. Использовать ранее рассчитанное, для предыдущей статьи, значение количества витков на вольт, нельзя. Включим трансформатор в сеть 220 вольт. Измерим напряжение на всех вторичных обмотках. Выберем обмотку с наименьшим напряжением. Например, оно будет равно U = 30 вольт. Отметим ее расположение на каркасе. Далее нужно разобрать трансформатор, вынув пластины сердечника, освободить каркас. Нужно перемотать трансформатор, смотать старую вторичную (или вторичные, если их несколько) обмотку и посчитать количество витков в выбранной обмотке. Оставляем только первичную обмотку и межобмоточную изоляцию. Допустим, количество витков в выбранной обмотке будет n = 140.
Тогда количество витков на один вольт w для этого трансформатора будет:
w = n : U = 140 : 30 = 4,67 витка.
Если вторичной обмотки совсем нет, или нет возможности ее посчитать, поступим другим способом. Намотаем поверх первичной обмотки 100 витков изолированного провода любого диаметра – это «измерительная» обмотка. Снова соберем трансформатор, включим в сеть 220 вольт и измерим вольтметром напряжение на «измерительной» обмотке. Допустим, оно будет 21,5 вольта.
Посчитаем количество витков на 1 вольт для этого трансформатора: w = n : U = 100 : 21,5 = 4,65 витка. Тогда количество витков в новой вторичной обмотке на 36 вольт будет:
U_2 = 36 • 4,65 = 167,8 витка. Округлим до 170 витков. «Измерительную» обмотку следует снять и намотать свою, соответствующего диаметра, проводом.
Подобный способ использования готовой первичной обмотки трансформатора можно применять в любом случае и на любое напряжение и мощность нагрузки. Количество витков на один вольт w будет каждый раз другим.domasniyelektromaster.ru
Намотка трансформатора своими руками
Трансформаторы в повседневной жизни встречаются практически повсеместно: такое устройство используется в схемах питания большинства бытовых приборов. В линиях электропередач также используются мощные повышающие и понижающие устройства.
Определение трансформаторов
Трансформатором считается электромагнитный агрегат, способный преобразовывать (понижать или повышать) входящее напряжение электротока. В зависимости от назначения, прибор имеет различную конструкцию, в которую входят две и более независимые обмотки с общим стальным сердечником. Исключением из этого правила является автотрансформатор, обмотки которого за счет прямого соединения, кроме электромагнитной, дополнительно имеют электрическую связь.
Типы конструкций
В зависимости от конструктивных особенностей различают такие трансформаторы со стальным сердечником:
- Стержневые – в них расположение обмоток производится на двух стержнях, что позволяет снизить толщину намотки;
- Обмотки в броневом сердечнике расположены на центральном металлическом стержне. Это дает ряд преимуществ: упрощение конструкции, полное наполнение окна намоткой. Также обмотка трансформатора получает дополнительную защиту от механических повреждений;
- Для кольцевых сердечников характерно максимальное использование электромагнитных свойств обмотки и малое внешнее магнитное поле. Но из-за сложности производства они не нашли широкого применения.
Виды трансформаторов
От назначения зависят и характеристики выпускаемых трансформаторов. Они бывают следующих видов:
- Силовые. Делятся на маломощные, средней и повышенной мощности агрегаты. Также выделяют наличие трехфазных и однофазных устройств;
- Трансформатор напряжения – самый применяемый вид прибора. Применяется для выравнивания напряжения до необходимого уровня, что обеспечивает надежную защиту чувствительного оборудования и электронных схем;
- Назначение импульсного трансформатора – передача и трансформация кратковременных электрических импульсов.
Принцип работы
Рассмотрим принцип действия на простейшем трансформаторе со стальным сердечником, который состоит из двух обмоток. К первичной обмотке подключается питание, а к вторичной – нагрузка (потребитель тока). Разница между входящим и выходящим напряжением зависит от количества витков первичной и вторичной катушки. Это отношение называется коэффициентом трансформации.
Способы определения обмоток
Теперь рассмотрим, как можно определить обмотки трансформатора. Это может пригодиться в ситуациях, когда на аппарате нет обозначений и маркировки. Как определить, где вторичная или первичная обмотка? Ведь неправильное подключение к нагрузке и питанию выведет устройство из строя. Для этого можно использовать следующие методы:
- Определить тип обмотки можно визуально. Основной фактор, позволяющий это сделать, является сечение выводов из катушки. Радиолюбители знают, что первичная обмотка имеет тонкие выводы, а вторичная всегда подключается более мощным проводом. Таким образом, можно визуально определить выводы катушек;
- Также определить тип обмоток позволяет сравнение их сопротивлений. Если при помощи омметра измерить сопротивление обеих катушек, то вы увидите, что одна из них имеет сопротивление меньше 1 Ома, а другая обладает более высоким сопротивлением, которое может достигать значения в несколько десятков Ом.
Исходя из этих показателей, можно с уверенностью определить, что обмотка, обладающая маленьким сопротивлением – вторичная, а катушка с большим сопротивлением – первичная.
Соединительные схемы обмоток трансформаторов
Давайте разберемся, какие бывают группы соединения трансформаторов импульсного тока. В трехфазных агрегатах имеется две такие же обмотки. Они маркируются обозначением ВН и НН, что расшифровывается как высшего и низшего напряжения. При этом в каждую обмотку включено по три фазы. В итоге группы соединения любых трехфазных трансформаторов насчитывают 6 фазных катушек, что в сумме составляет 12 выводов.
Существует два способа соединения обмоток трансформаторов со стальным сердечником: звезда и треугольник. Причем выбор определенной группы зависит от условий работы и назначения трансформатора. При этом способ выполнения группы соединения определяет ориентирование вектора напряжений обмоток относительно друг друга. Отметим, что обратное подключение начал и концов обмоток позволяет изменить взаимную ориентацию векторов напряжений.
Особенности подключения однофазных трансформаторов
Рассмотрим, как влияет изменение подключения контактной группы на примере простого однофазного устройства, в котором на одном стержне установлены две обмотки с односторонним направлением намотки. Для упрощения расчетов примем конец обмоток за нижние контакты, а начало – за верхние. В этом случае ЭДС 1 и 2, а также напряжения нагрузки и сети совпадают по фазе.
Теперь предпримем изменения для группы соединения, например, произведем обратное подключение во вторичной обмотке. Теперь вектор ЭДС 2 имеет обратную фазу относительно нагрузки. Такой опыт показывает, что для этого вида трансформаторов доступны две группы соединения: со смещением фазы 0 и 180 градусов.
Особенности подключения трехфазных трансформаторов
В этом отношении подключение трехфазных аппаратов более сложно: доступно 12 вариантов. Рассмотрим наиболее распространенную схему подключения.
Для примера возьмем трансформатор, катушки которого подключены звезда/звезда.
Чтобы совместить потенциалы, произведем соединение клемм а и А. Чтобы обозначить векторы существующих напряжений, начертим треугольник АВС. В этом случае от группы соединения зажимов зависят вектора вторичной катушки. Поскольку ЭДС обмоток полностью идентичны, также одинаковые векторы имеют фазные и линейные напряжения, поэтому такая схема обозначается как Y/Y – 0. Теперь произведем обратное подключение группы соединения вторичной обмотки.
Как видно из схемы, в этом случае происходит смещение на 180 градусов фазы ЭДС. Для такой группы соединения применяется обозначение Y/Y – 6.
Самостоятельная намотка трансформатора
В домашних условиях можно своими руками намотать небольшой трансформатор для питания небольшого потребителя или других нужд. Для этого умельцами разработан небольшой станок для намотки трансформаторов. Рассмотрим его принцип работы.
На главный вал при помощи зажимных гаек закрепляется каркас трансформатора. При помощи ремневой передачи, основной вал соединен со вспомогательным, на котором установлен подвижный укладчик провода. Шкивы обоих валов лучше сделать многопозиционными (2–3). Этим обеспечится возможность своими руками регулировать скорость намотки простой перестановкой пассика в другое положение. Также при помощи перекручивания пассика можно реверсировать процесс укладки провода. Вращение главного вала осуществляется при помощи вращающегося диска с ручкой. Также можно автоматизировать процесс намотки, если вместо вращающегося диска к валу подсоединить патрон шуроповерта, который будет играть роль электропривода.
Станину станка лучше изготовить из листов стали (потребуется электросварка), также подойдет фанера или доски толщиной 2–3 см. В этом случае для крепления своими руками нужно использовать металлические уголки и небольшие саморезы.
Перед тем как закрепить боковины на основании, сложите их вместе и одновременно просверлите отверстия для валов. Этим обеспечивается горизонтальность расположения вала. После этого боковины можно крепить к основанию.
Стоит отметить, что ширина основания выбирается исходя из устойчивости конструкции и длины выбранных валов.
Подходящие валы можно взять из старых матричных принтеров. В них установлены хорошие валы из закаленной и полированной стали. Там же можно позаимствовать подшипники для обеспечения плавности вращения. Как показывает практика разборки своими руками, эти элементы принтеров сделаны на совесть, и не успели износиться за время эксплуатации.
Укладчик провода изготавливается из металлических пластин, скрепленных при помощи подходящих винтов. В нижней части просверливается сквозное отверстие для одевания на вал для перемещения. В верхней части такой конструкции также необходимо сделать отверстие для прохождения провода.
Можно в задней части станины установить откидывающийся кронштейн, на котором крепятся катушки с проводом для намотки. Получается очень удобно и рационально.
Для подсчета количества витков на верхнем валу крепится небольшой магнит, а на боковине – геркон. Также понадобится любой работающий калькулятор: к кнопке «=» нужно подсоединить провода от геркона. В начале намотки на калькуляторе набирают 1+1, остальное считается во время вращения вала через магнитный сигнал геркона.
Такая конструкция позволяет своими руками наматывать катушки и обмотки трансформаторов довольно быстро и без особых усилий. Естественно, придется потратить немало времени на изготовление самого станка, но если вы намерены серьезно заняться перемоткой трансформаторов и других катушек, то такое приспособление довольно быстро окупит все потраченное на него время и средства.
Загрузка...
1582
Понравилась статья? Поделитесь:Советуем к прочтению
voltland.ru
самодельный трансформатор | Электрознайка. Домашний Электромастер.
В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт. Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт. Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
Сделаем упрощенный расчет трансформатора 220/36 вольт.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт
Где:Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;U_2 — напряжение на выходе трансформатора, нами задано 36 вольт;I_2 — ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р_1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где: S — площадь в квадратных сантиметрах,P_1 — мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S определяется число витков w на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8 витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков,
округляем до 173 витка.
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера.
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм.
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где: d — диаметр провода.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.
Площадь поперечного сечения провода диаметром 1,1 мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм².
Округлим до 1,0 мм².
Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².
Или два провода: - первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».domasniyelektromaster.ru