ул.Симферопольская
дом 5, офис 9
Корзина
Корзина пуста
АВР секционного выключателя (стр. 1 из 2). Автоматический выключатель резерва
Автоматический ввод резерва Википедия
Автоматическое включение резервного питания и оборудования (АВР) (англ.
Transfer switch) — устройство для восстановления питания потребителей путем автоматического присоединения резервного источника питания при отключении рабочего источника питания, приводящем к обесточению электроустановок потребителя, либо для автоматического включения резервного оборудования при отключении рабочего оборудования, приводящем к нарушению нормального технологического процесса.[1] АВР обеспечивает гарантированное электропитание, когда допускается перерыв на время ввода в действие резервного источника. Бесперебойное электропитание с "мгновенным" вводом в действие резервного источника обеспечивает источник бесперебойного электропитания.[2]Применение
Схема секционированной системы сборных шин. Секции имеют связь посредством секционного выключателя QS- электроприемников первой категории — обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания;
- особая группа электроприемников первой категории — обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания.[3]
Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Гарантированное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:
- Токи короткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
- В питающих трансформаторах выше потери электроэнергии
- Релейная защита сложнее, чем при раздельном питании.
- Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
- В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.
В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.
При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.
АВР разделяют на:
- АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
- АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
- АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
- АВР без восстановления.
АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.
АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
Время переключения
Возможно использование АВР не только во время длительных отключений рабочего источника питания, но и при кратковременных провалах напряжения. Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР.[4]:с. 61
Медленно действующее
Быстродействующее
Быстродействующее опережающее
Принцип действия
Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.
В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён ещё ряд условий:
- На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
- Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
- На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.
После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения.
В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.
См. также
Источники
- «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998 ISBN 5-283-010031-7 (ошибоч.)
- «Автоматическое включение резерва» М. Т. Левченко, М. Н. Хомяков «Энергия» 1971
Примечания
- ↑ Правила устройства электроустановок (ПУЭ). Глава 3.3. Автоматика и телемеханика (Издание шестое) п. 3.3.30
- ↑ Бушуев В.М. Электропитание устройств связи —М.: Радио и связь, 1986. С. 122
- ↑ Правила устройства электроустановок (ПУЭ). Глава 1.2 Электроснабжение и электрические сети (Издание седьмое) п.1.2.19
- ↑ Гуревич Ю.Е., Кабиков К.В. Особенности электроснабжения, ориентированного на бесперебойную работу промышленного потребителя —М.: Элекс-КМ, 2005.
Ссылки
wikiredia.ru
Автоматический ввод резерва (АВР)
Среди автоматических систем и средств релейной защиты особое место занимает автоматический ввод резерва. Основной функцией данного устройства является бесперебойное снабжение потребителей электрической энергией. С его помощью, в режиме автоматики, осуществляется переключение питания с основного источника на резервный при отсутствии напряжения в результате аварий и других непредвиденных ситуаций. Обратные действия выполняются в автоматическом режиме, после восстановления работы основного источника энергии.
Виды АВР
Системы автоматического включения резервного питания состоят из трех основных групп. Их распределение осуществляется в соответствии с конкретной областью применения. Существуют АВР с явным и неявным резервированием, а также система группового резервирования с использованием двухступенчатой схемы. Она состоит из двух основных АВР, соединенных последовательно между собой. К третьему вводу выполняется подключение дизель-генератора, приводимого в действие в случае полного обесточивания двух основных вводов.
Система автоматического ввода резерва срабатывает во всех случаях, когда отключается напряжение. Ее отличает быстродействие и однократное действие, не позволяющие реагировать на повреждения во вторичных цепях. АВР включается в работу только после обязательного отключения действующего устройства. Как правило она безотказна и срабатывает в любых условиях и неисправностях на линии.
Принцип работы и схема АВР
Основной принцип действия схемы АВР заключается во введении в действие высоковольтного масляного выключателя, подающего резервное питание при отключении напряжения.
Для того чтобы схема находилась в рабочем состоянии переключатель АВР-П должен быть во включенном положении. Реле АВР, обладающее однократным действием, постоянно находится под напряжением, контакты пребывают в замкнутом положении, до тех пор, пока включен переключатель. При отсутствии напряжения на высоковольтной шине, при минимальном напряжении, размыкающие контакты замыкаются. Одновременно происходит срабатывание часового механизма статического реле, отправляющего сигнал на отключение с минимальной задержкой по времени.
Все элементы АВР можно настроить таким образом, чтобы срабатывание было избирательным, селективным. Этот показатель необходимо правильно выбирать в зависимости от напряжения срабатывания пускового реле. Большое значение имеет выбор пускового напряжения, которое должно быть меньшим по сравнению с остаточным напряжением в месте короткого замыкания. Автоматический ввод резерва должен иметь отстройку срабатывания путем установки правильной выдержки времени. Кроме того, установка срабатывания пускового реле подбирается с учетом конкретных условий эксплуатации устройства.
electric-220.ru
Автоматический ввод резерва - это... Что такое Автоматический ввод резерва?
Автомати́ческий ввод резе́рва (Автомати́ческое включе́ние резе́рва, АВР) — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.
Общие требования к АВР
- АВР должен срабатывать за минимально возможное после отключения рабочего источника энергии время .
- АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
- АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.
Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.
Применение
Практическая реализация различных схем, обзорные статьи: Что такое АВР ? Часть вторая. Часть третья Часть четвертая Часть пятая Часть шестая Часть седьмая
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011. |
Согласно ПУЭ все потребители электрической энергии делятся на три категории: I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр. II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта. III категория — все остальные потребители электроэнергии.
Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:
- Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
- В питающих трансформаторах выше потери электроэнергии
- Релейная защита сложнее, чем при раздельном питании.
- Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
- В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.
В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.
При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.
АВР разделяют на:
- АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
- АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
- АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
- АВР без восстановления.
Принцип действия
В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения, подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён еще ряд условий:
- На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
- Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
- На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.
После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился.
В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.
См. также
Источники
- «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998 ISBN 5-283-010031-7
- «Автоматическое включение резерва» М. Т. Левченко, М. Н. Хомяков «Энергия» 1971
Ссылки
dikc.academic.ru
Автоматический ввод резерва - Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 июля 2014; проверки требуют 15 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 июля 2014; проверки требуют 15 правок.Автомати́ческий ввод резе́рва (Автомати́ческое включе́ние резе́рва, АВР) — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.
АВР должен срабатывать за минимально возможное после отключения рабочего источника энергии время .
- АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
- АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.
Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.
Применение[ | ]
Схема секционированной системы сборных шин. Секции имеют связь посредством секционного выключателя QSСогласно ПУЭ все потребители электрической энергии делятся на три категории: I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр. II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта. III категория — все остальные потребители электроэнергии. Кроме того, в I категории выделена особая группа электроприемников. В особую группу I категории включены электроприемники, «бесперебойная работа которых необходима для безаварийной остановки производства с целью предотвращения угрозы жизни людей, взрывов и пожаров».
Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:
- Токи короткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
- В питающих трансформаторах выше потери электроэнергии
- Релейная защита сложнее, чем при раздельном питании.
- Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
- В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.
В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.
При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно
encyclopaedia.bid
Автоматический ввод резерва — Википедия
Автомати́ческий ввод резе́рва (Автомати́ческое включе́ние резе́рва, АВР) — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.
Общие требования к АВР[править]
- АВР должен срабатывать за минимально возможное после отключения рабочего источника энергии время .
- АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
- АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.
Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.
Схема секционированной системы сборных шин. Секции имеют связь посредством секционного выключателя QSСогласно ПУЭ все потребители электрической энергии делятся на три категории: I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр. II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта. III категория — все остальные потребители электроэнергии. Кроме того, в I категории выделена особая группа электроприемников. В особую группу I категории включены электроприемники, «бесперебойная работа которых необходима для безаварийной остановки производства с целью предотвращения угрозы жизни людей, взрывов и пожаров».
Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:
- Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
- В питающих трансформаторах выше потери электроэнергии
- Релейная защита сложнее, чем при раздельном питании.
- Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
- В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.
В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.
При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.
АВР разделяют на:
- АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
- АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
- АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
- АВР без восстановления.
Принцип действия[править]
В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён еще ряд условий:
- На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
- Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
- На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.
После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов "в параллель" для бесперебойности электроснабжения.
В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.
- «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998 ISBN 5-283-010031-7 (ошибоч.)
- «Автоматическое включение резерва» М. Т. Левченко, М. Н. Хомяков «Энергия» 1971
www.wikiznanie.ru
АВР секционного выключателя
ТРЕБОВАНИЯ К УСТРОЙСТВАМ АВР, ПРИНЦИПЫ ИХ ВЫПОЛНЕНИЯ И РАСЧЕТ ПАРАМЕТРОВ
Требования к устройствам АВР. В системах электроснабжения при наличии двух (и более) источников питания часто целесообразно работать по разомкнутой схеме. При этом все источники включены, но не связаны между собой, каждый из них обеспечивает питание выделенных потребителей. Такой режим работы сети объясняется необходимостью уменьшить ток к. з., упростить релейную защиту, создать необходимый режим по напряжению, уменьшить потери электроэнергии и т. п. Однако при этом надежность электроснабжения в разомкнутых сетях оказывается более низкой, чем в замкнутых, так как отключение единственного источника приводит к прекращению питания всех его потребителей. Электроснабжения потребителей, потерявших питание, можно восстановить автоматическим подключением к другому источнику питания с помощью устройства автоматического включения резервного источника (УАВР).
Применяют различные схемы УАВР, однако все они должны удовлетворять изложенным ниже основным требованиям.
1. Находиться в состоянии постоянной готовности к действию и срабатывать при прекращении питания потребителей по любой причине и наличии нормального напряжения на другом, резервное для данных потребителей источнике питания. Чтобы не допустить включения резервного источника на короткое замыкание, линия рабочего источника к моменту действия УАВР должна быть отключена выключателем со стороны шин потребителей. Отключенное состояние этого выключателя контролируется его вспомогательными контактами или реле положения, и эти контакты должны быть использованы в схеме включения выключателя резервного источника. Признаком прекращения питания является исчезновение напряжения на шинах потребителей, поэтому воздействующей величиной устройства АВР обычно является напряжение. При снижении напряжения до определенного значения УАВР приходит в действие.
2. Иметь минимально возможное время срабатывания tabp1 . Это необходимо для сокращения продолжительности перерыва питания потребителей и обеспечения самозапуска электродвигателей. Минимальное время tabp1 определяется необходимостью исключить срабатывания УАВР при коротких замыканиях на элементах сети, связанных с рабочим источником питания, если при этом напряжение на резервируемых шинах станет ниже напряжения срабатывания устройства АВР. Эти повреждения отключаются быстродействующими защитами поврежденных элементов. При выборе выдержки времени необходимо также согласовывать действие УАВР с действием УАПВ и с действием других устройств АВР, расположенных ближе к рабочему источнику питания.
3. Обладать однократностью действия, что необходимо для предотвращения многократного включения резервного источника на устойчивое короткое замыкание.
4. Обеспечивать вместе с защитой быстрое отключение резервного источника питания и его потребителей от поврежденной резервируемой секции шин и тем самым сохранять их нормальную работу. Для этого предусматривается ускорение защиты после АВР.
5. Не допускать опасных несинхронных включений синхронных электродвигателей и перегрузок оборудования.
В зависимости от конструкции коммутационного аппарата, схемы электроснабжения и ее номинального напряжения основные требования к устройствам АВР выполняются по-разному (например, сетевые УАВР, устройства АВР в сетях напряжением до 1 кВ).
Пусковые органы и выбор параметров УАВР. В качестве примера рассмотрим УАВР на секционном выключателе схемы сети
(рис.10.11,а). В этой схеме шины секционированы; секционный выключатель Q5 отключен. Каждая секция питается от отдельного источника. Схему УАВР можно выполнить так, что устройство будет действовать на включение секционного выключателя Q5 при отключении любого из источников питания и исчезновения напряжения на любой секции шин. В том случае осуществляется взаимное резервирование с помощью УАВР двухстороннего действия.
Но прежде чем включить выключатель Q5, устройство АВР должно отключить выключатель Q2 или Q4, если он остался включенным при исчезновении напряжения на соответствующей секции шин. Для этой цели в схему УАВР вводят пусковой орган, в котором обычно применяют минимальные реле напряжения. В общем случае УАВР содержит также орган выдержки времени. Если резервируемой является одна из секций, например секция 1, то УАВР включает выключатель Q5 только при исчезновении напряжения на этой секции, предварительно отключив выключатель Q2, т. е. осуществляет одностороннее действие. Для удовлетворения основных требований, предъявляемых к УАВР, параметры пускового органа и органа выдержки времени выбирают следующим образом.
Минимальный пусковой орган напряжения Же должен срабатывать при понижениях напряжения на шинах, например секции 1, до U ост.к, вызванных короткими замыканиями в точках Ki—Кз (за элементами с сосредоточенными параметрами). Эти повреждения обычно отключаются защитой с выдержкой времени третьей ступени tс.з111 . Характер изменения напряжения на шинах секции 1 и напряжение срабатывания показаны на рис. 10.11, в.
U с.р1 < Uo ст.к /( k отс Ku ), (10.7)
где kотс ==1,1 ... 1,2.
При к.з. в точках К4—К6 устройство АВР тоже не должно срабатывать. В этих случаях напряжение на шинах секции 1 может снизиться практически до нуля (рис. 10.11, б), и минимальные реле напряжения срабатывают. Короткие замыкания в точках К4—К6 ликвидируются быстродействующими защитами с выдержкой времени t1с.з. , а реле напряжения будет находиться в положении после срабатывания в течение времени t1с.з +tо.в . После отключения поврежденного элемента напряжение на шинах секции 1 начинает восстанавливаться и осуществляется самозапуск электродвигателей. Для того чтобы исключить действие УАВР, в этом случае необходимо соответствующим образом выбрать выдержку времени tавр1 и обеспечить возврат минимальных реле напряжения в исходное состояние при напряжениях, не больших значения Uост.сзп . Это второе условие выбора напряжения срабатывания
U с . р 1 < = U остсзп /(K в Котс К u ), (10.8)
Где Kв=1,25—коэффициент возврата.
Принимается меньшее значение напряжения срабатывания, полученное из выражений (10.7) и (10.8). В расчетах часто принимают
U с.р1 =(0,25...0,4)( U ном / Ku ).
Оно обычно удовлетворяет обоим условиям. При этом выдержка времени ^авр! должна быть больше времени tс.з+tо.в (см. рис. 10.11, б). Обычно в расчетах принимают наибольшую выдержку времени защит присоединений, отходящих от шин источника питания ИП 1 и от шин секции 1, т. е.
t авр1 > t с.з. m ах + t (10-9)В некоторых схемах УАВР пусковой орган (минимальное реле напряжения) и орган выдержки времени объединены в одном реле. Если на резервируемом элементе системы электроснабжения (например, на линии Л1} имеется устройство АПВ, то время tавр1 . Должно согласовываться с временем действия УАПВ tапв1 чтобы УАВР действовало только после неуспешного действия УАПВ. Для этого время tавр1 полученное из выражения (10.9), Необходимо увеличить при однократном УАПВ на значение tапв1. Если в системе электроснабжения (рис. 10.11, а) наряду с рассматриваемым устройством АВР имеется УАВР, расположенное ближе к рабочему источнику питания, то его время действия t/авр1.
выбирается с учетом сказанного, а для рассматриваемого УАВР должно .выполняться дополнительное условие Время tзап в зависимости от типов выключателей и реле времени в схемах УАВР принимается 2—3 с.
В условиях эксплуатации случаются перегорания предохранителей или другие неисправности в цепях трансформаторов напряжения. При этом возможны срабатывания минимальных реле напряжения пускового органа. Для предотвращения ложных действий устройства АВР имеется ряд способов, например в пусковом органе используют два минимальных реле напряжения, включенные на разные трансформаторы напряжения. Для этих же целей в пусковом органе вместе с минимальным реле напряжения используют минимальное реле тока, включенное на ток питающей линии Л1 (рис. 10.11, а). Такой комбинированный пусковой орган срабатывает лишь тогда, когда вместе с исчезновением напряжения на шинах исчезает ток в линии. Ток срабатывания реле отстраивается от минимального рабочего тока Iраб.min питающей линии по условию
I с.з .= I раб. min /( K отс К1 ) (10.10)
где Котс = 1,5.
В этом случае выдержка времени tАВР1 , определяемая из условия (10.9), согласуется только с защитой, действующей при к.з. в точке К6. Если к резервируемым шинам подключены синхронные электродвигатели и компенсаторы, то при отключении рабочего источника питания на шинах в течение некоторого времени поддерживается остаточное напряжение благодаря разряду электромагнитной энергии, запасенной этими электродвигателями и компенсаторами. Значение этого напряжения снижается постепенно, поэтому минимальное реле напряжения УАВР может подействовать с замедлением, достигающим tс.р =1 с и более. Такое замедление нежелательно. Избежать его можно, если вместо минимального реле напряжения использовать реле понижения частоты. Это возможно, так как снижается не только значение, но и частота остаточного напряжения, причем время снижения частоты до значения уставки срабатывания, равной 46—47 Гц, обычно не превышает 0,2—0,3с, т. е. всегда значительно меньше, чем время снижения остаточного напряжения от первоначального значения до уставки срабатывания минимального реле напряжения. Действие устройства АВР имеет смысл при наличии напряжения на резервном источнике питания. Поэтому в пусковой орган УАВР включают максимальное реле напряжения, контролирующее наличие напряжения на резервном источнике питания, на шинах секции II. При минимальном рабочем напряжении [Uраб min реле должно находиться в состоянии после срабатывания, разрешая действие пускового органа УАВР. Это обеспечивается выбором
mirznanii.com
Зачем нужен автоматический ввод резерва АВР
Варианты автоматического ввода резерва АВР
Для автономного электроснабжения дома устанавливают ветряные электростанции, солнечные источники электроэнергии, гидроэлектростанции. Иногда эти источника сетевого напряжения выходят из строя, и их на время ремонта необходимо заменить резервным источником сети.
В качестве резервного напряжения может быть электросеть или генератор. Чтобы перейти с основного источника сети на резервный используют механический перекидной рубильник, электромеханическое устройство ввода резерва на электромагнитных пускателях и устройство автоматического включения резерва АВР на симисторах.
Можно конечно пользоваться механическим способом переключения, но этот вариант не очень практичен в век автоматики и электроники. Перед включением резерва рубильником, вам нужно завести генератор, а затем включить рубильник. Также вам нужно знать время появления основного источника напряжения, чтобы отключить генератор, что не очень удобно.
Щит с трехфазным автоматический вводом резерва
Для автоматического включения резервного питания служит устройство управления резервом. Это устройство имеет систему контроля фаз, которая следит за наличием фазы и нуля электросети, минимального напряжения сети и в аварийном случае подает сигнал на автоматический ввод резерва АВР, который переключает потребителя на резервный источник питания.
Электромеханический вариант ввода резерва имеет коммутационный магнитный пускатель для переключения источников напряжения, а в полностью автоматическом устройстве используют быстродействующие мощные симисторные ключи. Также существуют электромеханические устройства с электроприводом. Элементом ввода резерва в этом варианте является рубильник. Электропривод приводит в действие перекидной рубильник со средним положением.
Требования, преимущества и недостатки АВР
При работе ввода резерва должна быть исключена возможность встречного включения независимых источников электроэнергии путем механической и электрической блокировки. Как правило такая защита переключающих устройств должна иметь механическую и электрическую блокировки. Наибольшее время ввода резерва зависит от типа энергоносителя (генератор, солнечные батареи или ИБП).
На АВР должна присутствовать возможность установки задержки переключения, в случае неисправности одного из источников сети, а также установка минимального напряжения, при котором срабатывает устройство переключения . Также блок автоматики должен иметь индикацию состояния в данный момент времени и ручное управление переключением. Из преимуществ и недостатков устройств ввода резерва можно выделить;
— переключатели на симисторах имеют минимальное время перехода на источник сети, что важно в работе автоматики, серверов. Недостаток — это стоимость, которая значительно превосходит стоимость других типов переключателей;
Автоматический ввод однофазного резерва
— электромеханические системы ввода резерва с электромагнитными пускателями популярны наличием важных характеристик — это механическая и электрическая блокировка, устройством реле контроля фаз, при исчезновении одной фазы (для трехфазной сети) автоматика переключает на другой источник электропитания, контроль за напряжением сети, задержки переключения. Из недостатков — это отсутствие ручного перехода на другую сеть, большое время переключения, вероятность обгорания и залипания контактов.
Работа автоматического ввода резерва для генератора
Сейчас на рынке можно найти устройства автоматического включения резерва АВР на контроллерах с процессорами. Одним из таких является микропроцессорный контроллер популярного производителя Moeller. Этот контроллер определяет аварийное состояние или отсутствие источника сети и производит автоматический запуск генератора.
Подключение автоматического ввода резерва для дома
Когда напряжение и частота генератора достигает номинала, контроллер переключает на резерв. Параметры напряжения контролируется схемой реле фаз, момент ввода резерва определяется минимальным заданным порогом напряжения электросети. Время задержки зависит от времени, когда генератор достигает номинального напряжения и частоты.
Также у контроллера имеется временная задержка на включение автоматического ввода резерва АВР, чтобы исключить ложный запуск генератора при кратковременных провалах напряжения в сети. При появлении основного источника питания контроллер выдерживает время до 30 минут, с тем чтобы сеть полностью стабилизировалось, только потом дает команду автоматике на переключение.
Тоже интересные статьи
electricavdome.ru