50 гц сколько ватт. Сколько потребляют бытовые приборы кВт/ч в месяц
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Как возникли номинальные частоты. 50 гц сколько ватт


Ватты и герцы

.

На данный момент существует несколько способов оценки звучания аппаратуры. Основных два. Субъективная оценка и объективная: субъективная — основывается на слуховой оценке эксперта, объективная — исходя из технических характеристик. На первый взгляд кажется, что второй способ более достоверен. Ведь недостатки первого очевидны. Человек неидеален, поэтому оценки могут сильно меняться от квалификации и опыта эксперта. От его психологического настроя, заинтересованности, наконец! Но тем не менее, я являюсь сторонником именно этого способа. Почему?

Давайте разбираться! Какие характеристики, считаются важными для аудиоаппаратуры и как это коррелируется с качеством звука.

Сколько нужно Ватт?

Этот вопрос встает у каждого покупателя усилителя. И самый распространенный ответ на него «чем больше — тем лучше». Зачем? Вы думаете усилитель в 100 Вт на канал в два раза громче 50-ти Ваттного? Мало того, что это не так. Но и использовать эту мощность вы никогда не будете. Самые продвинутые скажут, что чем мощнее, тем меньше искажений на рабочей громкости. Они же растут пропорционально уровню сигнала. Абсолютно верно, но вот только у современных усилителей этот параметр давно находится, за гранью заметности.

Ватт — это единица измерения мощности, т. е. количество работы, совершаемой в единицу времени. Какую работу совершает усилитель? Двигает динамик, для того, чтоб тот преобразовывал электрические колебания в звуковые. На это влияет множество факторов, зависящих не только от самого усилителя, но и от характеристик динамика. Насколько он будет сильно сопротивляться выполнению этой работы, насколько он эффективен (т. е. его КПД, сколько полезной энергии уйдет на нагрев, сколько на сопротивление подвесу, измеряется в процентах), его способность преобразовывать электрическую энергию в звуковую (чувствительность, измеряется в Децибелах на Ватт). Думаю понятно, что работа усилителя, в конечном итоге преобразуется в звук с потерями.

То есть даже на громкость будет влиять множество факторов, обычно в характеристиках даже не указанных, что же говорит о звуке в целом?

Ну и это не все. Мощность указываемая в технических характеристиках. измеряется в определенных условиях. Каких? Идеальных. Во первых она измеряется на определенной частоте — 1000 Гц, до появления определенного процента искажений (КНИ в процентах). Кстати далеко не все производители указывают, при какой же величине искажений, производились измерения. Измеряют лабораторными приборами. Но в жизни усилитель будет нагружен, на не идеальный динамик и воспроизводить он будет не синусоиду. А главное, что происходит на других частотах?

Так, что мощность не главная и далеко не единственная характеристика, влияющая на звук. Так почему же все обращают на нее внимание?

Потому, как покупая, тот или иной товар потребитель хочет быть уверенным в правильности выбора. А как выбрать, глядя на коробку? Смотреть на цифры! Чем больше, тем лучше. А производителю главное продать, кто будет копаться в тонкостях приведенных характеристик или признается себе, что не слышит чего-то выдающегося?

Ну хоть что-то означают эти цифры?

У усилителей, мощность вовсе не говорит о качестве звучания и лишь косвенно о громкости и возможности усмирять акустику.

По моему опыту звучать достойно и громко могут усилители Ватт от 15! Вы не верите? Вы просто не слышали Audio Note Ongaku!

У акустических систем, в силу их пассивности, нет такой характеристики как мощность . Цифры в Т. Х. говорят лишь о том с какой мощностью усилителя они могут справиться. Вы все еще боитесь, что они взорвутся? Конечно можно нанести урон, любой части аудиосистемы, если поступать бездумно. Но перед механическим разрушением всегда начинают расти искажения. Слышимые, как хрипение и посторонние призвуки. Многие их слышали. Многие их слушают! А как иначе прохожие поймут, что внутри тонированного бумбокса едет «реальный пацан»? Отсюда и рождается вера в мощность. Хотя мои уши не выдержали бы и 20 секунд.

Частотный диапазон

История, почти такая же, как с Ваттами. Во-первых, измерять можно по разному. Во-вторых объясните мне, глядя на эти графики, как звучат колонки в жизни? При том, что измерения проводились на синусоиде, а не музыкальном сигнале.

Амплитудно-частотная характеристика DLS M60

Амплитудно-частотная характеристика Dali Mentor 2

Почему говоря о влиянии амплитудно-частотной характеристики мы коснулись именно акустики?

Только у нее может быть такая сильная неравномерность АЧХ.

И она приведена в технических характеристиках. Но имеет ценность, только при указании отклонений (обычно пишут отклонение +-2 Дб). Иначе какой вам смысл знать, что акустика воспроизводит 20 Гц, если завал на этой частоте составляет -12 Дб. Вы все равно не услышите ее на фоне более громких частей диапазона. Но даже если неравномерность указана, это говорит лишь о способности воспроизводить более широкий или узкий диапазон частот. О качестве, точности и ясности не дает ни малейшего представления. Хорошо и полноценно звучать колонки могут, начиная с полосы 50 Гц-20 КГц. Хотя шире — не значит лучше. Слышал огромное количество отлично звучащих колонок с более узкой полосой и откровенно плохих с более широкой!

С сопротивлением та же история. Пишут результаты идеальных измерений, а в реальности:

Зависимость модуля Z от частоты Dali Mentor 2

Зависимость модуля Z от частоты DLS M60

И так с любой характеристикой. Поэтому даже зная точные и подробные результаты измерений, можно лишь примерно понять, чего ждать от звука.

Чувствительность

Для акустики, в принципе, чем больше, тем громче! Но на поверку оказывается, хватает и 87 Дб/Вт! Хотя от 90, можно вообще не заморачиваться.

Коэффициент демпфирования

Говорит о способности усилителя работать со сложной нагрузкой (читай любой акустикой). По идее, чем больше тем лучше. Обычно хорошим считается от 100. Правда, порой это достигается утяжелением, неповоротливостью, грубостью звука.

А самое главное, влияют на это ВСЕ компоненты системы. И говорить надо об общем звучании, при их взаимодействии. На основе т. х., понять какой будет звук не представляется возможным.

www.lowsound.ru

сколько ампер в 1 ватте постоянное наприяжение

Для постоянного тока - P=I*U, т. е. например Ватт = Ампер * Вольт, Ампер = Ватт / Вольт Для 1-фазного переменного тока 220В/50Гц с моментальным напряжением (Uм = 220В) , значение U вычисляется по формуле U=Uм / (корень из 2), т. е. U = 220 / 1,41 = 156В. Пара примеров: Процессор, подключенный в разъем с питанием 12В и потребляющий 85Вт, будет потреблять ток = 7А. Электрочайник, подключенный к розетке ~220В и потребляющий 2000Вт, будет потреблять ток = 12,8А. Можно еще усечть КПД, который обычно не больше 0.7, т. е. полученные ватты нужно умножить на КПД.

Смотря какое напряжение. Например при напряжении 12 В, и нагрузке 1 Ватт, сила тока будет - 1/12=0,083 Ампера.

Столько же, сколько килограммов в 1 метре.

От напряжения зависит. I=M/U

Мощность - это ток умножить на напряжение. Считайте...

Вт=В*Oм. Вот сам и посчитай. Наверняка у тебя есть не только мощность, но и сопротивление нагрузки, да только ты нам не сказал

раздели 1ватт ...на напряжение.. . которое тебе известно.. . вот и будет сила тока...

Нисколько! Пока не будет разности потенциалов!

1Вольт х 1Ампер=1Ватт (хватит?).

touch.otvet.mail.ru

Герц, Вольт и Ампер. 110\220\380V & 50\60Hz

Первые однофазные сети переменного тока в США в 1880-е годы имели частоту 133 Гц (это удобно для обрабатывающего оборудования). Но исследованиями ведущих электротехников конца XIX века (Чарльз Штейнмец, Никола Тесла и другие) было установлено, что при реальном качестве трансформаторных сталей оптимальная частота равна приблизительно 55 Гц. В Америке выбрали "круглую" частоту 60 Гц, ориентируясь на улучшение качества. Консервативные немцы приняли 50 Гц, чтобы можно было использовать сталь с ухудшенным качеством. Так и разошлись жизненные пути Старого и Нового света... В начале 1950-х годов появились новые магнитные сплавы (пермаллой и т.п.), позволявшие строить электросети с частотой 400 Гц, по общей экономичности превосходящие традиционные - 50 и 60 Гц. Но техническая инерция не дала это сделать: пришлось бы заменить все трансформаторы и другое оборудование на электростанциях всех видов, все асинхронные и синхронные электродвигатели, индукционные электросчетчики и многие другие устройства, для работы которых важна частота сети.

До конца Первой мировой войны каждая из фирм, выпускавших пластинки, записывала фонограммы со своей скоростью вращения, а патефоны делали с перестройкой центробежного регулятора Уатта в достаточно широких пределах. Но с 1919 по 1927 годы появились ручные электроинструменты (электропаяльники, электродрели, электропилы, электрорубанки) и бытовые электроприборы (утюги, чайники, электроплитки, вентиляторы), а также электропатефоны - пружинный привод, часто заводимый вручную, заменили асинхронным двигателем. И от американского сетевого стандарта 60 Гц произошел другой, на полвека ставший общемировым (до конца 1960-х годов) - единая скорость вращения патефонных пластинок 78 об/мин. Почему выбрали редуктор с замедлением именно в 46 раз, не известно; возможно, просто взяли то, что оказалось под руками. Но он замедлял скорость вращения малонагруженного ротора 3600 об/мин (скорость вращения магнитного поля при минимальном количестве полюсов) до 78,26 об/мин.

         М.В.Кожевников  

Папа работает трансформатором:

получает 380, пропивает 220,

гудит и домой несет 127.

(анекдот 1960-1970-х годов)

      Предполагалась революция      Электросетями переменного тока мы пользуемся ежедневно - дома, в лабораториях, на производстве. Чаще всего из стены на нас смотрит розетка однофазной сети, для более мощного оборудования подводят трехфазную сеть. Последние 15-20 лет это делают и в квартирах, в частности там, где установлены электроплиты. До начала 1960-х годов в розетках были номинальные напряжения 110, 127 и 220 В, но сначала исчезли сети с напряжением 110 В, а в середине 1990-х и последние с напряжением 127 В. Всего 10-15 лет назад в СНГ на некоторых заводах, шахтах и других крупных потребителях энергии, имеющих собственные трансформаторные понижающие подстанции, эксплуатировались локальные сети 127 В. Например, в Казани - до реконструкции оперного театра к 1000-летнему юбилею города. Локальная сеть 127 В есть и сейчас - в московском и санкт-петербургском метро, а совсем уж локальные сети - где их только нет; например сеть 36 В для помещений с опасными в смысле поражения электричеством условиями. Вообще-то локальные сети 127 В и 110 В будут существовать еще долго, потому что любая сеть - это и подключенное к ней оборудование, например мощные электродвигатели. И замена сети превращается в проблему замены всего подключенного к ней оборудования, а оно еще может работать и работать. Да и не факт, что новые электродвигатели подойдут для того, для чего использовались старые и т.д. Но далее речь пойдет о сетях больших масштабов.      Там, где установлено мощное оборудование, кроме трехфазных сетей 220/380 В (первое напряжение - фазное, второе - линейное), имеются еще и сети 380/660 и 660/1140 В. Необходимость в повышении напряжения с ростом мощности - следствие ограничений по току: начинают греться провода. По классификации энергетиков низковольтными считаются переменные напряжения до 1000 В, трехфазная сеть 660/1140 В и постоянные напряжения до 1500 В. У врачей-реаниматоров понятие о низковольтности свое, так что будьте с электричеством осторожны.       С 01 января 1993 года был введен в действие ГОСТ 29322-92, который ужесточил требования к стабильности напряжения в бытовой сети. Ранее норма была разной для бытовых и промышленных сетей, для первых допускалось понижение напряжения на 15% и превышение на 10%. ГОСТ установил единый допуск на предельное отклонение напряжения ? 10%. Но главное - стандарт предусмотрел предельный срок 31 декабря 2002 года (с тех прошло девять лет!) для перевода трехфазных электросетей переменного тока частоты 50 Гц с номинального напряжения 220/380 на 230/400 В. Это была революция в самых массовых электросетях, но произошла она так же, как многое у нас делается.      Немного о самом стандарте. До сего дня в этот стандарт ни разу не вносились изменения, а сам он - отечественная версия авторитетных рекомендаций МЭК 38-83 (Международного электротехнического комитета), имеющая силу межгосударственного стандарта. Это означает, что революция должна была произойти не только в СНГ, но и во всех остальных странах, имеющих частоту 50 Гц в своих сетях. Между прочим, и в половине Японии - ибо в Стране восходящего солнца граница между электросетями 50 и 60 Гц проходит немного южнее Токио (американские фирмы электрофицировали юг, европейские - север). А вот напряжение у них единое - 100 В. Симпатичная картинка распределения стран мира по напряжениям и частотам показана на рис. 1         
         http://www.travel.ru/info/107603.html Но вот текстом, который ее сопровождает, надо пользоваться осторожно - его писали не вполне электрики :)      В бытовых однофазных сетях всех стран с сетями 50 Гц ранее использовались номинальные напряжения от 100 до 130 В и от 190 до 277 В, должно же в соответствии с ГОСТом стать единое 230 В. Соответственно вместо ряда (геометрической прогрессии) номинальных напряжений 127-220-380-660-1140 В должен был начать применяться ряд 133-230-400-690-1200 В. Для однофазных электросетей частоты 60 Гц тот же ГОСТ вводил два единых напряжения - 120 и 240 В.      Что произошло в реальности?      В местных службах эксплуатации электросетей до сих пор на вопросы о переходе с 220 на 230 В пожимают плечами: "Пока не было указаний...." Но при замерах напряжения в моей домашней сети (центр Саратова) оно близко к 230 В уже несколько лет. Импортная бытовая техника давно маркируется "230 V". Последствия перевода сетей на 230/400 В - самые разнообразные, вот два первоочередных.      Во-первых, из ассортимента ламп накаливания придется исключить все, маркируемые по максимальному напряжению менее 245 В, поскольку наиболее вероятное отклонение равно 5,8% (10%/-3). Соответственно, наиболее вероятное повышенное напряжение - 243 В. Осветительные и декоративные лампы накаливания общего назначения маркируют либо диапазонами рабочих напряжений: 215-225, 220-230, 225-235, 235-245, 245-255 В, либо средними значениями, соответственно 220, 225, 230, 240. 250. В случае повышения напряжения пригодными к эксплуатации станут только лампы двух последних типов. Продажу ламп с другими диапазонами давно надо запретить, ведь срок службы при повышенном напряжении резко сокращается, особенно у ламп, которые включаются ночью, когда суммарная нагрузка в сети уменьшается, а напряжение повышается. Однако в последние шесть лет из розничной торговли практически исчезли лампы, маркированные двумя последними диапазонами напряжений. То ли изготовители и оптовики избавляются от старых запасов, то ли сознательно не выпускают ламп с большими рабочими напряжениями, то есть более долговечных.       Во-вторых, на вводах сети в различное оборудование массовой замене подлежат контрольные стрелочные вольтметры со шкалами 0-250 В (для 220 В) и 0-400 В (для 380 В) - вольтметрами со шкалами 0-300 В (для однофазных сетей 230 В) и 0-500 В (для трехфазных сетей 400 В). Поскольку 110% от номинальных значений равны 253 и 440 В.   А вы чего хотели? - изменение стандарта в сфере массового потребления - это еще то приключение. Страшнее был бы только переход с 60 секунд и 60 минут на чего-то 100.       Прощай, лампочка Ильича      Более того --- с первого января 2011 года постановлением правительства РФ должен прекратиться оборот (производство и продажа) ламп накаливания с потребляемой мощностью 100 Вт и более. Двумя годами позже под запрет подпадут лампы 75 Вт и более, в 2014 году - 25 Вт и более. Так что мы будем энергосберегать, а фанаты ламп накаливания - вешать гирлянды из 15-ваттных ламп для холодильников. С соответствующей потерей надежности и ростом стоимости. Европа перейдет на энергосберегающие лампы на два, а Америка - на год раньше России.       До 2010 года лампы должны были производиться со следующими мощностями: 15, 25, 36, 40, 54, 60, 75, 93, 100, 150, 200, 300, 500, 750, 1000 Вт. Впрочем, реально существовали не все перечисленные. Баллоны бывали из прозрачного стекла, из синего (для светомаскировки), а также светорассеивающие: из молочного стекла, из опалового, и с матовым покрытием изнутри. Выпускались и разнообразные декоративные лампы для иллюминации, оформления витрин и других целей. Их баллоны могли иметь сложную форму (например, витой свечки) или быть окрашенными изнутри или в массе стекла. Лампы накаливания для освещения были первыми серийными вакуумными приборами, с них началась вся электровакуумная промышленность. Вторым типом вакуумных приборов стали в конце XIX века рентгеновские трубки, в начале XX века к ним добавились радиолампы. Главные достоинства ламп накаливания по сравнению с конкурентами: они дешевы, им не страшны ни мороз, ни жара, они включаются без пускорегулирующего аппарата. Недостатки - низкий световой выход, хрупкость, большие габариты.      Как возникли номинальные напряжения      В 1882 году в Нью-Йорке Эдисон построил первую в мире электросеть общего пользования. Нагрузками этой сети у абонентов были осветительные лампы накаливания и коллекторные электродвигатели. Напряжение в сети было постоянное, а точнее - однополярное пульсирующее, от коллекторного генератора. Счетчики потребленного электричества были гальванические - по привесу медного электрода, опущенного в электролит: время от времени контролеры обходили потребителей и взвешивали. Номинальное напряжение Эдисон выбрал равным 100 В: во-первых, круглое число, а, во-вторых, изоляционные материалы той поры позволяли строить долговечные надежные конструкции с рабочим напряжениями не более 150 В и плохо переносили пульсации.       Механически прочных пластмасс (карболита, гетинакса, текстолита) для изолирующих корпусов и деталей, поливинилхлорида для изоляции проводов - всего этого еще не было. Фарфор, пропитанные парафином бумага и картон, шеллачный лак, шелковые и хлопчатобумажные нити, резина (причем из природного каучука) - все, чем располагал Эдисон.      С учетом синусоидальной формы полуволн однополярного пульсирующего напряжения, при амплитуде 150 В действующее (эффективное, среднеквадратичное) напряжение будет равно 105 В. Лампы накаливания, серийное производство которых впервые в мире наладил Эдисон, выпускались для номинального напряжения 100 В (как до сих пор в Японии!). Однако для компенсации потерь напряжения в проводах городской сети генераторы вырабатывали 110 В. Сети переменного тока в США возникли позднее ("Вестингауз Электрик", ставшая потом основой "Дженерал Электрик"), и они были вынуждены следовать фактически внедренным стандартам Эдисона, в том числе для электрического освещения лампами накаливания. Номинальное напряжение 110 В в сетях США сохранилось до конца XX века.      К середине 1930-х годов прогресс электроизоляционных материалов позволил удвоить напряжение - 220 В. Так, в центре Саратова перевод старых городских сетей со 110 В пульсирующего однополярного тока на 220 В переменного с частотой 50 Гц происходил с 1938 по 1940 годы. Новые однофазные сети в городе сразу строили с напряжением 220 В, а трехфазные - 220/380 В. Удвоение напряжения позволило увеличить нагрузку без увеличения сечения проводов.      В трехфазных сетях 127/220 В линейное напряжение (между фазными проводами) равнялось 220 В, а фазное (от фазного провода до нулевого) - 127 В. В больших городах с давно развитыми электросетями 110 В было бы очень дорого менять всю проводку и ее арматуру (патроны, выключатели, розетки) на новые. Поэтому заменили 110 на 127 В (Москва, Ленинград, Баку, Казань) - это было компромиссное решение. На новых промышленных предприятиях этих городов трехфазные сети сразу строили с напряжением 220/380 В. Так в СССР возникли два стандарта - 127/220 и 220/380 В. А трехфазные асинхронные двигатели в СССР специально делали с возможностью переключения статорных обмоток: "треугольником" для 127/220 В, "звездой" для 220/380 В. Кое-где сохранялась сети 110 В, их переводили с пульсирующего однополярного на переменный ток (50 Гц). Нагревательные приборы и лампы накаливания общего назначения (осветительные и декоративные) до конца 1980-х годов производили для трех номинальных напряжений - 110, 127 и 220 В. Однако к началу 1970-х исчезли сети общего пользования 110 В, а в середине 1990-х и 127 В (последние - внутри Бульварного кольца Москвы).      Бытовая радиоэлектронная аппаратура по ГОСТ 5651-51 могла питаться переменным током (50 Гц) с напряжениями 110, 127 и 220 В, для чего в каждом аппарате имелся переключатель на три положения. Тогда (в начале 1950-х) возможность питания постоянным (пульсирующим однополярным) током уже была необязательной. И по ГОСТ 5651-64 в бытовой радиоэлектронной оставались два обязательные напряжения - 127 и 220 В. В последнем по времени стандарте - ГОСТ 5651-89 - требования к сетевым напряжениям совсем отсутствуют: видимо, негласно предполагали единое номинальное значение 220 В (с перспективой перехода на 230 В).      Как возникли номинальные частоты      Первые однофазные сети переменного тока в США в 1880-е годы имели частоту 133 Гц (это удобно для обрабатывающего оборудования). Но исследованиями ведущих электротехников конца XIX века (Чарльз Штейнмец, Никола Тесла и другие) было установлено, что при реальном качестве трансформаторных сталей оптимальная частота равна приблизительно 55 Гц. В Америке выбрали "круглую" частоту 60 Гц, ориентируясь на улучшение качества. Консервативные немцы приняли 50 Гц, чтобы можно было использовать сталь с ухудшенным качеством. Так и разошлись жизненные пути Старого и Нового света... В начале 1950-х годов появились новые магнитные сплавы (пермаллой и т.п.), позволявшие строить электросети с частотой 400 Гц, по общей экономичности превосходящие традиционные - 50 и 60 Гц. Но техническая инерция не дала это сделать: пришлось бы заменить все трансформаторы и другое оборудование на электростанциях всех видов, все асинхронные и синхронные электродвигатели, индукционные электросчетчики и многие другие устройства, для работы которых важна частота сети.      До конца Первой мировой войны каждая из фирм, выпускавших пластинки, записывала фонограммы со своей скоростью вращения, а патефоны делали с перестройкой центробежного регулятора Уатта в достаточно широких пределах. Но с 1919 по 1927 годы появились ручные электроинструменты (электропаяльники, электродрели, электропилы, электрорубанки) и бытовые электроприборы (утюги, чайники, электроплитки, вентиляторы), а также электропатефоны - пружинный привод, часто заводимый вручную, заменили асинхронным двигателем. И от американского сетевого стандарта 60 Гц произошел другой, на полвека ставший общемировым (до конца 1960-х годов) - единая скорость вращения патефонных пластинок 78 об/мин. Почему выбрали редуктор с замедлением именно в 46 раз, не известно; возможно, просто взяли то, что оказалось под руками. Но он замедлял скорость вращения малонагруженного ротора 3600 об/мин (скорость вращения магнитного поля при минимальном количестве полюсов) до 78,26 об/мин.      А у нас в розетке...      В основном мир поделен так: в Старом Свете (Европа, Африка, Азия, Австралия и Океания) - 50 Гц, в Новом Свете (Америка от Канады до Бразилии и Перу) - 60 Гц. Отклонения многочисленны и многообразны, вот большинство из них.    В Азии 60 Гц - Саудовская Аравия, Тайвань, Филиппины, остров Диего-Гарсия (наследие США), обе Кореи (японское наследие), Бахрейн и часть Японии.   В Океании 60 Гц - острова под управлением США (бывшие и остающиеся), а также Французская Полинезия (Таити и другие острова).   В Африке 60 Гц - Либерия: государство основано в XIX в. неграми - выходцами из США, связи сохраняются.   В Северной Америке 50 Гц - Гренландия (датское владение).   В Центральной Америке 50 Гц - на мелких островах Карибского бассейна, бывших и остающихся колониях Великобритании и Франции (Барбадос, Гренада, Ямайка и другие), там же на Гаити, Аруба (владение Нидерландов) - 50 и 60 Гц.   В Южной Америке 50 Гц - Гайана (бывшая британская колония), Французская Гвиана, Аргентина, Боливия, Парагвай, Уругвай, Чили (кроме гостиницы на острове Пасхи - там 60 Гц).      По справочным данным за 2000-2006 годы в странах зоны 50 Гц наряду с сетями от 220 до 240 В некоторые сохраняли сети 110 В - Люксембург, Бахрейн, Ливан, Ливия, Науру, Боливия, Ямайка. Были и другие варианты: 115 В - в Тунисе, 127 В - во Вьетнаме, Гонконге, Того, Арубе. На Барбадосе и на Гаити имелись только сети 110 В. Кое-где имелись сети и большим наряжением: 380 В - в Боливии, 400 В - в Индии, 410 В - в Самоа, 440 В - в Бангладеш и на Кокосовых островах.       В те же годы в странах зоны 60 Гц применялись номинальные напряжения 100 В в Японии и в КНДР, 200 В в КНДР, 220, 230 и 240 В в Доминиканской республике. В соседних США и Канаде - разные номинальные напряжения: 110 и 120 В, а на Кубе присутствуют сети по обоим этим стандартам. Три страны имели сети с тремя разными номинальными напряжениями: в КНДР 100, 200 и 220 В, в Боливии - 110, 220 и 380 В, на Кокосовых островах - 110, 220 и 440 В. Мировой рекорд - в Суринаме, бывшей колонии Нидерландов - там аж четыре номинальных напряжения: 110, 115, 127 и 220 В.      По справочнику WRTH (World Radio & Television Handbook), изданному в 2000 году, две страны, бывшие британские колонии Индия и ЮАР, имели еще и сети постоянного тока, но в изданиях последующих лет (2004 и 2006) это уже не значилось.      А что на транспорте?      Для железных дорог на постоянном токе в США первоначально соединяли пять стандартных генераторов Эдисона по 110 В -- получалось 550 В. Потом стали делать специальные генераторы 275 В и соединять их по два. На внутригородских трамваях часто применяли половинное напряжение, то есть 275 В - ради увеличения долговечности изоляторов. Выбор материалов тогда ограничивался стеклом, фарфором и пропитанной древесиной.      В СССР городские трамваи переводили с 275 В на 550 В во второй половине 30-х годов, поскольку к этому времени качество изоляционных материалов улучшилось, и выбор стал больше. Причем еще в 20-е годы были разработаны шестифазные выпрямители на ртутных газоразрядных вентилях, при питании от 220 В переменного напряжения они давали 540 В с относительно небольшими по амплитуде пульсациями на частоте 300 Гц (при питании от 240 В они давали 600 В). На сегодняшний день напряжение 275 В сохранилось на шахтных узкоколейных электровозах, более высокое напряжение там использовать нельзя из-за высокой влажности и наличия проводящей пыли. Троллейбусы с самого начала строили на те же напряжения, что и трамваи и питались они от тех же подстанций.      В 50-60-е годы в СССР и других странах пытались перевести троллейбус и трамвай на 1200 В (два генератора по 600 В), но проблемы с изоляцией решить не удалось. По-видимому, 800 В в метро - это эксплуатационный предел в городских условиях, поскольку в метро есть и наземные участки. В 50-е годы Румыния первой в мире перевела трамвай и троллейбус на 750 В. В стандартах МЭК 38-83 и ГОСТе 29322-92 указано, что 750 В - это минимальное напряжение для электротранспорта с контактной сетью постоянного тока. Упоминается там и 600 В, но это напряжение не рекомендовано для новых сетей.      После 1945 года в СССР сложилось кризисное положение с трамваями - во многих городах во время оккупации рельсы и провода были вывезены как лом в Германию. Восстанавливали трамвай только в больших городах (Киев, Одесса, Львов, Минск), а в областных центрах это не делали, причем во многих городах, не бывших под оккупацией, трамвай снимали, так как предполагался переход на троллейбус и автобус.      Тем временем однофазное переменное напряжение в тяговых контактных сетях довели до 6,25 кВ, затем до 25 кВ (под нагрузкой, на холостом ходу - 27,5 кВ). А в Германии, как только появились управляемые ртутные вентили (игнитроны), построили делители частоты 50 Гц на три и получили 16 и 2/3 Гц при напряжении 15 кВ путем сложения низкочастотной синусоиды из трех кусков, взятых из разных фаз. При втрое меньшей частоте втрое медленнее вращается ротор электродвигателя. В 1945 году из восточной зоны оккупации вывезли в СССР эти преобразователи, но так и не ввели их в эксплуатацию, а потом передали ГДР.      В США и Канаде, там, где частота 60 Гц, напряжения на железной дороге те же - 6,25 и 25 кВ, причем второе - основное.       Наследие Эдисона      Когда в 1882 году в Нью-Йорке Эдисон построил первую в мире электросеть общего пользования, ему поневоле пришлось изобретать много второстепенных устройств: выключатели, патроны для лампочек, штепсельную разъемную пару - розетку и вилку. Первым типом выключателя был поворотный. Патрон - резьбовой. Штепсельный разъем - с цилиндрическими контактными штифтами. Их базовые размеры сохранились до наших дней: диаметр цоколя у наиболее массовых ламп накаливания равен 27 мм (1,1 дюйма), диаметр контактных штифтов штепсельной вилки - 3,8 мм (0,15 дюйма), а межцентровое расстояние - 19 мм (0,75 дюйма).      В наше время на смену эдисоновской вилке постепенно приходят евророзетка и евровилка, штепсельные двухполюсные с цилиндрическими штифтами и с заземляющим контактом. Предельная нагрузка увеличилась с 6 А до 10 А для постоянного и 16 А для переменного тока. Соответственно двухпроводная однофазная система подключения к сети постепенно заменяется трехпроводной - с проводом защитного заземления. Причем вставляя вилку в розетку, мы сперва соединяемся с заземлением, а лишь потом с двумя силовыми проводами.      Надо знать еще вот что: вилки и розетки не рассчитаны на частое замыкание и размыкание нагрузочного тока, хотя в стандартах и оговорен ресурс, исчисляемый в тысячах циклов включения-отключения. В реальной жизни контактные детали в вилках и в розетках через какое-то время обгорают, поэтому мощные нагрузки должны иметь свой встроенный выключатель. В 1960-70-е годы дополнительно к эдисоновским внедряли штепсельные разъемы с плоскими штифтами, причем трех несовместимых типов - с разным взаимным расположением плоских штифтов. Но межцентровое расстояние было единым - полдюйма. Для сетей от 12 до 42 В (электроинструмент и местное освещение на производстве) плоскости были взаимно перпендикулярны, что обеспечивало правильную полярность подключения к сетям постоянного тока. Для сетей от 110 до 220 В плоскости были параллельны, и они перпендикулярно располагаясь относительно продольной оси симметрии вилки. Сечение штифтов на 10 А в обоих типах вилок - 6 на 1,5 мм.      Для проводных радиосетей (30 В - наибольшее пиковое значение действующего напряжения звуковых частот до 10 кГц) штифты на вилке тоже были параллельны, но повернуты на угол 45 градусов относительно продольной оси симметрии вилки. Штифты - тоньше, чем 1,5 мм для тока 10 А. Именно эти вилки и получили наибольшее распространение на практике. Большинство абонентских громкоговорителей комплектовали со второй половины 1960-х годов такими вилками. Новые радиорозетки стали универсальными - они позволяли вставить как старую эдисоновскую, так и новую специальную радиовилку. Наушники для радиосетей (ТОН-2 и ТОН-2м завода "Октава" в Туле, ныне - изготовитель микрофонов) продолжали комплектовать эдисоновскими вилками. Новую специальную радиовилку невозможно вставить в любую сетевую розетку, что иногда случалось по рассеянности со старыми эдисоновскими (в абонентском громкоговорителе сгорал понижающий трансформатор).      Двухполюсные вилки с плоскими штифтами с заземляющим контактом на ток до 10 А имели круглый корпус и три штифта в вершинах правильного треугольника. Центры штифтов отстояли от центра корпуса на 7,92 мм (5/16 дюйма), заземляющий штифт был длиннее на 3 мм. Такими вилками комплектовали, например, малогабаритные насосы для сада-огорода. Розетки для них делали как для монтажа внутри помещений (в двух исполнениях - для скрытой проводки и открытой), так и для наружной установки (водозащищенные, с откидной крышкой и резиновыми уплотнителями). Но в 1983 году вилки с плоскими штифтами и ответные им розетки на ток до 10 А исключили из советских стандартов, их оставили только для радиосетей, а с цилиндрическими -штифтами оставили и эдисоновские и "евро".      Мир в целом медленно идет к стандартизации, но все время возникает что-то новенькое, рождается и умирает, или выживает, иногда вытесняет старое, чтобы когда-нибудь в свою очередь уступить место...      ...уступить место под звездами - новым вилкам и розеткам, новым напряжениям и новым частотам.

ОТСЮДА

audio-hi-end.livejournal.com

Сколько потребляют бытовые приборы кВт/ч в месяц

Прочитано: 3 034

Наверняка, в какой-то период своей жизни кому-то из вас приходилось слышать от своих домашних, что возросшие платы за электроэнергию – целиком и полностью ваша вина. То вы много смотрите телевизор, то подолгу сидите за компьютером, то много гладите или часто стираете. Опять же, вопрос размера платы за электроэнергию может вдруг взволновать и вас самих. Давайте попробуем хотя бы примерно разобраться, сколько же электроэнергии могут потреблять бытовые электроприборы.

Компьютер

По большому счету, если считать грубо и приблизительно, всё зависит от мощности блока питания и конкретной работы, которую компьютер в данный момент выполняет. При заявленной мощности блока от 350 до 550 Ватт, он вряд ли будет потреблять её всю даже в режиме полной загруженности. Сюда же можно добавить монитор – от 60 до 100 Ватт. Таким образом, среднестатистический блок питания 450 Ватт и монитор 100 Ватт потребляют 550 Ватт или 0,55 кВт электроэнергии в час. Опять же, эти цифра сильно завышена. Для приблизительного расчета можно взять практически максимальное значение – 0,5 кВт/ч – не ошибёмся. При пользовании компьютером 4 часа в день получаем 60 кВт/ч в месяц. Соответственно, при пользовании 8 часов в сутки – 120 кВт/ч, и так далее.

Холодильник

Энергопотребление холодильников рассчитывается за 365 дней для сети 220В/50Гц. Рассчитанное на 100 л полезного объема в день, оно позволяет сравнивать различные по размеру холодильники. Опять же, количество потребляемой мощности зависит от объема холодильника и от количества хранящихся в нем продуктов. Также свой отпечаток накладывают и внешние условия, меняющиеся в зависимости от времени года. В техническом паспорте на холодильник указывается энергопотребление в год. В большинстве случаев эта цифра колеблется в пределах от 230 до 450 кВт/ч. Путём нехитрых расчетов, поделив эту цифру на 12 месяцев, получаем от 20 до 40 кВт/ч. Опять же, указанное число применимо лишь для идеальных условий. В реальности же вряд ли удастся достичь этого значения.

Телевизор

Телевизоры бывают разные. Современный телевизор с электронно-лучевой трубкой потребляет от 60 до 100 Вт/ч. В среднем, для расчета, будем брать 100 Вт/ч. При просмотре телевизора 5 часов в день – 0,5 кВт/ч. В месяц – 15 кВт/ч. ЖК-телевизоры с достаточно большой диагональю потребляют около 200-250 Вт в час. Не последнюю роль в этом деле играет выставленная яркость. Соответственно, и число потраченных киловатт-часов в месяц можно смело умножать на 1,5. Получается от 20 до 35 кВт/ч.Небольшие ЖК-телевизоры потребляют примерно столько же, сколько и телевизоры с ЭЛТ, или чуть-чуть меньше: от 50 до 80 Вт/ч – 8-12 кВт/ч в месяц. Плазменные телевизоры с большой диагональю потребляют от 300 до 500 Ватт в час. Если у вас несколько разных телевизоров – суммируйте значения.

Стиральная машина

Мощность, потребляемая стиральной машиной – величина не постоянная, и зависит режима стирки, массы белья и типа материала. В среднем, заявленная мощность большинства стиральных машин – от 2 до 2,5 кВт/ч. Однако, редкие машинки потребляют такое количество энергии. Для расчетов можно взять от 1 до 1,5 кВт/ч. При стирке 3 раза в неделю по 2 часа, получаем от 24 до 36 кВт/ч в месяц.

Чайник

Настоящие монстры потребления в квартире — чайник и утюг. Работая минимальное количество времени, они потребляют почти столько же электроэнергии, как некоторые работающие весь месяц приборы. При мощности чайника от 1,5 до 2,5 кВт/ч, пользуясь им 4 раза в день по 5 минут, получаем от 20 до 25 кВт/ч в месяц.

Утюг

С утюгом почти такая же история. Мощность у него примерно такая же, как и у чайника, и если гладить 3 раза в неделю по 1 часу, то получится 25 – 30 кВт/ч в месяц.

Это лишь наиболее известные потребители электроэнергии в вашей квартире. А ведь есть ещё и микроволновые печи, пылесосы, посудомоечные машины, зарядные устройства мобильных телефонов и ноутбуков. Не говоря уже о лампах накаливания, которые, в зависимости от их количества, мощности и времени горения, могут брать на себя от 50 до 100 кВт/ч электроэнергии, потребляемой в месяц.

В результате, путём простого сложения, получаем приблизительный расход от 200 до 300 кВт/ч в месяц. Опять же, без учета электроплиты. А сколько электроэнергии расходуете вы?

Источник: zhkhacker.ruАвтор: Максим Мингалёв

Теги:
https://yandex ru/clck/jsredir?from=yandex ru;search;web;;&text=&etext=1838 o_145_mUPZUgUPG1f1s5ksAPTmlurWSUl6iRI8TpRCvsRvGGIvBwhluQApJJwBzx 28261c9ad7f4500586b14f8fa2feac17be4856ff&uuid=&state=_BLhILn4SxNIvvL0W45KSic66uCIg23qh8iRG98qeIXme.

www.economlife.com

50 Гц или 60 Гц ??

в российских электросетях 50 Гц

ОПРЕДЕЛЕННО 60! Но ничего особенного не будет))))

50-герц в России.

50 герц в росс сетях ето тока у америкосов 60

В сетевом фильтре нет ЭЛЕМЕНТОВ... чувствительных к разнице в 10 ГЕРЦ....

писят герц я те как паСан отвечаю)))

touch.otvet.mail.ru

Как перевести RMS watts в советские ватты ?

В России используется два параметра мощности - номинальная и синусоидальная. Это нашло свое отражение в названиях акустических систем и обозначениях динамиков. Причем, если раньше в основном использовалась номинальная мощность, то теперь чаще - синусоидальная. Например, колонки 35АС впоследствии получили обозначение S-90 (номинальная мощность 35 Вт, синусоидальная мощность 90 Вт) Номинальная мощность - мощность при среднем положении регулятора громкости усилителя, при которой остальные параметры устройства соответствуют заявленным в техническом описании. Синусоидальная мощность - мощность, при которой усилитель или колонка может работать в течение длительного времени с реальным музыкальным сигналом без физического повреждения. Обычно в 2 - 3 раза выше номинальной. Западные стандарты более широки, как правило, используются DIN, RMS и PMPO. DIN - примерно соответствует синусоидальной мощности - мощность, при которой усилитель или колонка может работать в течение длительного времени с сигналом "розового шума" без физического повреждения. RMS (Rated Maxmum Sinusoidal - Номинальный Синусоидальный Максимум) - Максимальная (предельная) синусоидальная мощность - мощность, при которой усилитель или колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. Обычно на 20 - 25 процентов выше DIN. PMPO (Peek Music Power Output пиковая музыкальная выходная мощность) - Музыкальная мощность (запредельная :-)) - мощность, которую динамик колонки может выдержать в течение 1 -2 секунд на сигнале низкой частоты (около 200 Гц) без физического повреждения. Обычно в 10 - 20 раз выше DIN. Как правило, серьезные западные производители указывают мощность своих изделий в DIN, а производители дешевых музыкальных центров и компьютерных колонок в PMPO. 100 W (PMPO) = 2 x 3 W = 6 W (DIN) Не стоит забывать и о сопротивлении колонок. В основном на рынке присутствуют колонки сопротивлением 4, 6, 8 Ом, реже встречаются 2 и 16 ом. Мощность усилителя будет различаться при подключении колонок разного сопротивления. В инструкции усилителя обычно указано, на какое сопротивление колонок он рассчитан, или мощность для различного сопротивления колонок. Если усилитель допускает работу с колонками различного сопротивления, то его мощность растет с понижением сопротивления. Если Вы будете использовать колонки сопротивлением ниже указанного для усилителя, это может вызвать его перегрев и выход из строя, если выше - то указанная выходная мощность достигнута не будет. Конечно, на громкость акустики влияет не только выходная мощность усилителя, но и чувствительность колонок, но об этом в следующий раз. Главное - не забывать, что мощность - это только один из параметров, далеко не самый главный для получения хорошего звука. Microlab H600: Мощность (RMS), Вт Сабвуфер – 110 Сателлиты – 5 х 50 Соответственно саб по нашим стандартам потянет 110*0,8 = 88 ватт сателлиты 50*0,8 = 40 по сорок ватт

примерно на 10 дели РМС . Вроде так

Стоит добавить, что в S90 стоят головки прямого излучения, а их отдача по звуковому давлению (КПД) в 5-10 раз выше, чем у компрессионных, используемых в остальных упомянутых системах. Так что по акустическим параметрам саб от микролаба соответствует вшивеньким МАС-15.

нестыковка: вы пишете RMS отличается от номинальной мощности в 2-3 раза и тут же выдаете коэффициент 0,8.Так 0,5(0,3) или 0,8?

touch.otvet.mail.ru

Свращики здесь есть? Сколько ватт в среднем потребляет электросварка?

Для непродолжительной работы бытового сварочного аппарата электродом диаметра 2 - 4 мм сгодится обычная розетка на 16 А и автомат в щитке на те же 16А, но через некоторое время при зажигании электрода автомат будет выключаться от перегрева, а потому лучше использовать 25А-автомат. А если Вас интересует сколько придется платить за электроэнергию, то рассчитывайте что мощность сварочного аппарата 4,5 кВт, но режим его работы крайне не продолжительный - в бытовых условиях около 4,5квт*ч*10%., то-есть 0,45 квт*ч за час.

Зависит от типа сварочника и тока сварки. . Ищите инфу по каждому конкретному случаю в тех паспортах сварочных аппаратов..

Бытовые инверторы 3-5 КВт.

Если варить тройкой, то примерно 4.5 - 5 кВт, нужен вводной автомат 25 А.

Сварочный аппарат WM-160C2 Напряжение: 220(230) В Частота: 50/60 Гц Выходной ток: 55-160 А Потребляемый ток: 32 А Диаметр электрода: 1,5-3 мм Вес: 21 кг Размеры: 24х25х36 см

смотри в инете

Если есть сомнения, я подключаюсь на вводных изоляторах.

touch.otvet.mail.ru